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Abstract

Multi-agent reinforcement learning (MARL) has primarily focused on solving a
single task in isolation, while in practice the environment is often evolving, leav-
ing many related tasks to be solved. In this paper, we investigate the benefits of
meta-learning in solving multiple MARL tasks collectively. We establish the first
line of theoretical results for meta-learning in a wide range of fundamental MARL
settings, including learning Nash equilibria in two-player zero-sum Markov games
and Markov potential games, as well as learning coarse correlated equilibria in
general-sum Markov games. Under natural notions of task similarity, we show that
meta-learning achieves provable sharper convergence to various game-theoretical
solution concepts than learning each task separately. As an important intermediate
step, we develop multiple MARL algorithms with initialization-dependent con-
vergence guarantees. Such algorithms integrate optimistic policy mirror descents
with stage-based value updates, and their refined convergence guarantees (nearly)
recover the best known results even when a good initialization is unknown. To our
best knowledge, such results are also new and might be of independent interest.
We further provide numerical simulations to corroborate our theoretical findings.

1 Introduction

Many real-world sequential decision-making problems involve multiple agents interacting in a
shared environment, a scenario commonly captured by game theory and addressed using multi-agent
reinforcement learning (MARL). Existing research in MARL has primarily focused on solving a
single task (i.e., a game) independently. In practice, however, one often needs to collectively solve a
set of similar tasks due to the dynamically evolving environment. For example, in sponsored search
auctions [48]], the advertising spaces and search results are dynamic, and each bidder with an active
bid will participate in a sequence of related auctions. In multi-robot cooperation [31,126], the learning
agents are often first pre-trained in simplified environments and are then asked to quickly adapt to
more complicated ones. In cloud computing [S3|[70], a learning-based autoscaling policy needs to
achieve fast model adaptation to deal with varied application workloads or constantly evolving cloud
infrastructures. All of these intriguing applications call for the development of intelligent multi-agent
systems that can continuously build on previous experiences to enhance the learning of new tasks.
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Meta-learning, or learning-to-learn [64} 56, 165, 58], is a rapidly developing approach that is particu-
larly suitable for learning in a set of related tasks. In essence, meta-learning studies the use of data
from existing tasks to learn representations or model parameters that enable quick adaptation to new
tasks. By exploiting the knowledge obtained from prior tasks, the meta-learner can ideally solve
an unseen task using much fewer training samples than learning from scratch, especially when the
tasks share some inherent similarities. Despite many empirical successes [71} 31} 26], the theoretical
results of meta-learning in multi-agent scenarios are still relatively lacking. It remains elusive whether
meta-learning can provably expedite the convergence of MARL, and if so, what the proper task
similarity assumptions to impose are. In fact, it is even unclear whether a meta-learner converges at
all in a highly non-stationary system with loosely-coupled learning agents and diverse task setups.

In this paper, we make an initial attempt toward characterizing some of the central theoretical
properties of meta-learning in a wide range of fundamental MARL settings. We focus on the
classic model-agnostic meta-learning (MAML) [20]] type of algorithms that aim to learn a good
initialization for quick adaptation to new tasks. To study the convergence rate of MAML, an
important prerequisite is to understand how the convergence of MARL algorithms depends on
the quality of policy initialization. However, the convergence guarantees of most existing MARL
algorithms are initialization-independent: They fail to track how the sub-optimality of the initial
policy propagates during the learning process, and only provide pessimistic guarantees with respect
to worst-case initialization. As a crucial intermediate step to meta-MARL, we need to establish
refined initialization-dependent convergence guarantees for MARL. Our main contributions are thus
summarized as follows.

Contributions. 1) For learning Nash equilibria (NE) in two-player zero-sum Markov games, we first
propose an MARL algorithm blessed with a refined convergence analysis that explicitly characterizes
the dependence on policy initialization (Section[3.1). Our algorithm runs optimistic online mirror
descent for policy optimization and performs stage-based value function updates. Even when
initialized with random policies, our algorithm still matches the best-known convergence rates in the
literature except for an extra logarithmic term. Our algorithm and analysis appear to be new and might
be of independent interest. 2) Based on such refined analysis, we show that meta-learning provably
achieves faster convergence to NE when learning a sequence of “similar” zero-sum games collectively,
where our similarity metric naturally depends on the closeness of the games’ NE policies (Section[3.2).
3) For learning NE in Markov potential games (MPGs), we show that a simple refinement of an
existing algorithm suffices to provide initialization-dependent guarantees. We establish sharper
convergence rates of meta-learning when the MPGs have similar potential functions (Section &.T). In
addition, with a properly chosen policy update rule, we prove the non-asymptotic convergence of the
exact MAML algorithm in MPGs (Section 4.2)), despite the convoluted learning dynamics of multiple
loosely-coupled agents. 4) For learning coarse correlated equilibria (CCE) in general-sum Markov
games (Section [5), we analogously start by designing an initialization-dependent MARL algorithm,
and then establish the sharper convergence rate of meta-learning under natural similarity metrics. 5)
We provide numerical results to corroborate our theoretical findings (Section [6)).

Related Work. Gradient-based meta-learning is a simple and effective approach that can be easily
applied to any learning problem trained with gradient descent. The seminal MAML method [20]]
tries to learn a good model parameter initialization that leads to quick model adaptation. Theoretical
properties of MAML have been investigated in a series of works [54} 17,166, [18}130]]. In particular,
[L7, 30] have established the convergence of MAML to first-order stationarity for non-convex
objectives. [[18] has designed an unbiased gradient estimator for MAML in reinforcement learning
tasks. Various first-order approximations [20, 49, [17] of MAML have been proposed to avoid
the heavy computation of the Hessian. Meta-learning has also been studied in online convex
optimization [21} 14} [14} 35], where regret bounds have been established under different metrics of
task similarity. Another line of research [29, 51} 41]] views meta-learning through the lens of task
inference, where an RL policy is conditioned on a belief over tasks and perform Bayesian updates
through interactions to adapt to different tasks.

MARL has been widely studied under the formulation of stochastic games (i.e., Markov games)
[S7]. Due to the fundamental difficulty of computing NE in generic games [10], most MARL
research has focused on learning NE in games with special structures (such as zero-sum Markov
games [67, 12,169, 3| [12] 168 7} [72} [73]] and Markov potential games [43] 38} (76, 25/ 22} [15} [78]]) or
learning weaker solution concepts such as (coarse) correlated equilibria [40} 44, |59, 33} 1471 |16, [13].
The most relevant works are [[77} [72]], which have studied the convergence of optimistic no-regret



learning and smooth value updates in MARL with full-information feedback. For learning NE in
MPGs, [38,[76}[15] have studied independent policy gradient methods and established their sample
complexity results. These works have focused on learning a single game in isolation but have not
considered exploiting the connections between multiple games to expedite the learning process.

Most related to ours, [27] has studied meta-learning in normal-form games. Under different notions
of game similarities, [27] has shown faster convergences of meta-learning in zero-sum, general-sum,
and Stackelberg games. [[75] has investigated no-regret learning in time-varying zero-sum normal-
form games. Compared to [27, [75], we consider meta-learning in the more generic and challenging
Markov game setup with state transitions. Other related works include meta-learning for regret
minimization in a distribution of games [61] and meta-safe RL for quick adaptation in constrained
Markov decision processes (CMDPs) under task similarity [34]]. Finally, meta-learning has also been
empirically applied to many important MARL scenarios, including multi-intersection traffic signal
control [71], multi-agent communication with natural language [26]], and multi-agent collaboration
with first-person pixel observations in open-ended tasks [63]].

2 Preliminaries

Markov game An N-player episodic Markov game is defined by a tuple G =
N, H, S, { AN {ri}Y,, P), where (1) N = {1,2,..., N} is the set of agents; (2) H € N is
the number of time steps in each episode; (3) S is the finite state space; (4) A; is the finite action
space for agent i € N (5) r; : [H] X 8§ x Aan — [0, 1] is the reward function for agent i, where
Aan = x| A, is the joint action space; and (6) P : [H] x S x Aan — A(S) is the transition kernel.
The agents interact in an unknown environment for 7' episodes. Without loss of generality, we make
a standard assumption [33}|59] that each episode starts from a fixed initial state s;. Our results can
be easily generalized to the setting where the initial state is sampled from a fixed distribution. At
each time step h € [H|, the agents observe the state s, € S, and take actions ay; € A;,i € N
simultaneously. Agent 4 then receives its reward rp, ;(sp, ap), where ap, = (ap 1, ..,an, N ), and the
environment transitions to the next state sp11 ~ Py (-|sp, ar). Let S = |S], A; = | A;],Vi € N, and
Amax = max;cN Az

Policy and Nash equilibrium. A (Markov) policy m; € II; : [H] x S — A(A;) for agent i € N
is a mapping from the time index and state space to a distribution over its own action space. Each
agent seeks to find a policy that maximizes its own cumulative reward. A joint, product policy

m = (m,...,mn) € Il induces a probability measure over the sequence of states and joint actions.
We use the subscript —i to denote the set of agents excluding agent 4, i.e., N'\{i}. We can rewrite
m = (m;, m—;) using this convention. For a joint policy 7, and for any h € [ l,s€S,anda € A,
we define the value function and Q-function for agent 7 as
H H
Viri(s) == Ex«| Z T i(Shsan)|sh = s], QF ;(s,a) == Ex| Z Thei(Snr, an)|sp = s,ap = a.
h'=h h'=h
For agent i, a policy 7| is a best response to w_; if Vi s (s1) = sup,, Vi7" (s1). A joint

(product) policy m = (m, m_;) € Il is a Nash equllzbrzum (NE) if m; is a best response to m_;
forall i € N. Similarly, for any ¢ > 0, a joint policy 7 = (m;, 7_;) is an e-approximate NE if

Vi (1) > VY “L'(sl)—s,VieN.

Correlated policy and coarse correlated equilibrium. We define 7 = {7, : R x (S x A)"~1 x
S — A(A)}heim) as a (non-Markov) correlated policy, where for each h € [H], 7, maps from
a coordination device z € R and a history of length h — 1 to a distribution over the joint action
space. Let ; and 7_; be the proper marginal distributions of 7 whose outputs are restricted to A(A;)
and A(A_;), respectively. The value functions for non-Markov correlated policies at step h = 1
are defined in a similar way as for product policies. Given the PPAD-hardness of calculating NE
in general [11], people often study a relaxed solution concept named coarse correlated equilibrium
(CCE), which allows possible correlations in the policies: In pamcular for any € > 0, a correlated

policy m = (m;, m_;) is an e-approximate CCE if V;";"~*(s1) > V; ;’L‘ (s1) —e,Vie N.

Two-player zero-sum Markov game. An important special case of Markov games is (two-player)
zero-sum Markov games, where there are two players (N = 2) with exactly opposite rewards



(ry = —72). In a zero-sum game, we simply use r, V', and ) to denote the reward and (Q-)value
functions for the max-player, i.e., agent 1. Correspondingly, the min-player has —r, =V, and —(Q).
For notational convenience, we denote the action space for the max-player (resp. min-player) by A
(resp. B), and let A = | A|, B = |B|. We also write their policies (71, 72) as (i, v) for short. In
zero-sum games, it is known that although the NE policy (u*, v*) may not be unique, all the NE have
the same values. We use V" and @;; to denote the NE value function and the NE Q-function. For any
fixed (h, s) € [H] x S and an arbitrary function @ : S x A x B — R, we may consider Q(s, -, -) as
an A X B matrix. Then, for any policy pair (i, vp,) at step h € [H], we can write in shorthand:

[U;th] (3) = anph(~|s),b~uh(-\s) [Q(Sva7 b)] = <Mh7 th> (S)’

[U;Q] (Sa ) = ]Ea~p,h(~|s)[Q(57 a, )]7 and [QV}L] (Sa ) = Ele/h(~|S)[Q(S7 K b)]
Given the transition function P and an arbitrary function V : § — R, we define
[PhV](s,a,0) :=Egp,(|sab) [V ()]
The Bellman equations can hence be rewritten more succinctly as
VI (s) = [N; ﬁ’”uh] (s), and Q)" (s,a,b) = rp(s,a,b) + [PhV}f:’_Vl] (s,a,b).
Markov potential game. Another important class of games is Markov potential games [43][39,[76].
MPGs cover Markov teams [36], a fully cooperative setting where all agents share the same rewards.

A Markov game is an MPG if there exists a global potential function ® : IT x § — [0, Pyax] that
can capture the variations of the agents’ individual values: Specifically, Vi € N and s € S,

Dy (i, mi) — Ps(mfym—i) = V"7 (s) = V7 (8), Vmy, € Ty, my € Ty

Throughout the paper, we consider the classic full-information feedback setting [23| 18} (62} |68l [7]],
where the players are assumed to have exact information of the consequences of each of their
candidate actions. In the case of zero-sum games, this implies that for any (h, s), the max-player
and min-player can query [Qnvp](s, ) and [1;] Qr](s, -), respectively. Our meta-learning results
can be easily extended to the stochastic bandit feedback setting using standard techniques as in
(3} 144, 1331 [15].

Meta-learning. Let G = {G*} be a set of different Markov games. Each game is defined by G* =
(N, H, S, { AN {rF}N,, P*), where we assume without loss of generality that the games share
the same agent set and state & action spaces, but can have different transition and reward functions.
Most of our results are established in the online learning setting where we encounter a sequence of K
games (G',. .., GX) one by one. To achieve faster convergence, the learning agents should use the
knowledge obtained from previous games to expedite the learning process in future games.

The underlying principle of MAML [20] is to learn a good initialization such that running a few
training steps from this initialization can lead to well-performing model parameters on any new task.
An MAML-type algorithm in the context of RL typically involves two nested stages. The inner stage
(or “base algorithm™) 1) performs 7" iterations of policy updates to optimize for an individual task G*:

it ap(P L GRY, vt e [T). (1

When task G* is completed, the outer stage (or “meta-algorithm”) W learns to form a good initializa-
tion 710 for a new task G**! using all the knowledge obtained from all previous tasks:

0 W({T Y e w6, GP). 2
In this paper, we seek to properly instantiate both the base algorithm ¢ and the meta-algorithm ¥ for

a variety of MARL problems. We aim to show that a proper design of the meta-learning procedure
(1, ) can largely reduce the number of iterations 7" required to find NE or CCE in a new game.

3 Meta-Learning for Two-Player Zero-Sum Markov Games

In this section, we study meta-learning for Nash equilibria in zero-sum Markov games, where players
are fully competitive. Since MAML-type algorithms seek to learn a good initialization for quick
adaptation, it is crucial to explicitly characterize how the convergence behavior of an MARL algorithm
depends on the initial policy. To our best knowledge, such results are not directly achievable using
existing algorithms. For this reason, in Section[3.1] we start by proposing a new base algorithm
for zero-sum Markov games that has a refined initialization-dependent convergence guarantee. Based
on that, we present our meta-algorithm (2) in Section and establish its sharper convergence rates.
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3.1 Initialization-Dependent Convergence in an Individual Zero-Sum Markov Game

Algorithm [T| presents our optimistic online mirror descent algorithm with stage-based value updates
for learning NE in a zero-sum Markov game. To establish initialization-dependent convergence,
Algorithm [T| performs optimistic online mirror descent (OMD) [55]62]] for policy updates (Lines [3]
and [6), in contrast to the popular optimistic follow the regularized leader (FTRL) method in recent
MARL policy optimization [[77}[72]]. We choose the negative entropy as our regularizer R, in which
case the Bregman divergence Dg(, -) reduces to the Kullback-Leibler divergence and optimistic
OMD becomes an optimistic variant of the classic multiplicative weights update (MWU) algorithm.

Algorithm 1: Optimistic Online Mirror Descent for Zero-Sum Markov Games
Input: Initial policies ji : [T] X [H] X S — A(A) and U : [T] x [H] x § — A(B);
Set stage index 7 < 1, ¢ < 1,and L, + H;
Initialize: 1) = 09 «+ i}, v) = 09 + i}, and Q7 + 0,Vh € [H];
for iterationt <— 1 to T do

Aucxiliary policy update: for each step h € [H]| and state s € S:

iy, (-|s) = argmaxn (i, [Q7v, (s, -)) — D " (19));
REA(A)

Dy (-|s) <= argmaxn (7, [(u, 1) T QR1(s, ) = Dr(2, 7,7 (-]));
PEA(B)

Policy update: for each step h € [H]| and state s € S:
14, (+|s) ¢ argmaxn (u, [Q7v, " 1(s,)) — Dr(p, iy, (5));
HEA(A)

vi(c|s) < argmaxn (v, [(uy, 1) " QFl(s,-)) — Dr(v, 75,([5));
veA(B)

ift — "+ 1> L, then
et 8 b+ 1, Loy < (14 1/H)L, 3
Value update: for each h € [H|,s € S,a € A,b € B:
tend
., 1 < , o
P ) = D0 (ot Pulahe) T Qha ()] ) (s,
T t':t;E“"
T T+ Ll =ab < g, vl =0k« 0], Vh € [H;
Output policy: i, (-|s) = % S°7_, pt (-]s) and 7, (-|s) = £ 321, vi(-|s), Vs € S,h € [H].

In order to establish convergence to (approximate) NE, we need to show that our optimistic OMD
policy updates achieve “no regret” with respect to the value estimate sequence at each state, i.e., to
upper bound (B)). If we were to use the celebrated oy = g—ﬁ learning rate [32] to update the value
function estimates, we will inevitably need to show a no-weighted-regret guarantee for optimistic
OMD, because such a time-varying learning rate assigns non-uniform weights to each history step.
However, incorporating OMD with a dynamic learning rate is known to be challenging and can
easily lead to linear regret [S0]. While a stabilization technique [[19] has been introduced to tackle
this challenge, we take a different route by resorting to an alternative value update method, namely
stage-based value updates [79]]. Specifically, we divide the total T iterations into multiple stages
and only update our value estimates at the end of a stage (Line[9). We let the lengths of the stages
grow exponentially at a rate of (1 + 1/H) (Line [79,145]]. The exponential growth ensures that
the total T iterations can be covered by a small number of stages, while the (1 + 1/H) growth
rate guarantees that the value estimation error does not blow up during the H steps of recursion
(Lemma |§I) Compared with the incremental o, = g—_ﬁ update rule that modifies the value estimates
at every step, stage-based updates are more stationary and allow us to assign uniform weights to each
history step. This leads to a simpler no(-average)-regret problem [47] that can be easily addressed by

(optimistic) OMD.



We introduce a few notations before presenting the convergence analysis of Algorithm I} Let 7(¢)
denote the index of the stage that iteration ¢ belongs to. We denote by 7 the total number of stages,
ie., 7:=7(T). Forany (7, h, s) € [T] x [H] x S, define the per-state regrets for the max-player as
end
;¢

T - 71 J 0T,
reg} 1(s) :== max E <u — s, Qv ) (s). 3)
ot uitelseaa) L " hoh h>

—¢start
=t

The per-state regret reg;72(s) for the min-player can be defined symmetrically (see (T14) in Ap-
pendix . We define the maximal regret (over the states and the two players) as reg; :=
maXges Max;—1 2 {reg,:,i(s)}. An upper bound for the per-state regrets is provided in Lemma ﬁ
of Appendix [B] which is useful in the analysis of Algorithm[I] We use the standard notion of

NE-gap(, v) := V;"" (s1) — VT (s1)
to measure the optimality of a policy pair (u, ). The initialization-dependent convergence rate of
Algorithm T]is as follows.
Theorem 1. If Algorithm([l|is run on a two-player zero-sum Markov game for T iterations with a
learning rate n < 1/(8H?), the output policy pair (ji, V) satisfies:

3 H 7T
2SS ma (Dl (1), #.(1s) + Dy (1), 7 C15)))

h=171=1

NE—gap(ﬂ, 17) <

In addition, if the players’ policies are initialized to be uniform policies, i.e., ji}(-|s) = 1/A and
i (-|s) =1/B,Vs € S, € [T], h € [H|, we further have

_ 768 H" log T log(AB)

NE-gap(f, 7) < 7 . 4)

Compared to existing results [77, [72]], Theorem [I] directly associates the convergence rate with
the quality of the initial policy (i, 7). Even when a good policy initialization is unknown and the
algorithm is initialized with uniformly random policies, our convergence rate in (@) still matches the
best-known result in the literature [[72]] except for an extra factor of O(log T'). When suppressing the
logarithmic terms, Theorem [T|immediately implies that for any ¢ > 0, Algorithm [I]takes no more

than T' = O(H® /¢) steps to learn an e-approximate NE in an individual zero-sum Markov game.

3.2 Sharper Convergence with Meta-Learning

Having settled the initialization-dependent convergence in a zero-sum game, we proceed to show
how meta-learning can learn a set of related games collectively and more rapidly. We consider an
online setting with a sequence of K games G = (G!,..., G¥). For the max-player, let i* and ji*,
respectively, denote the initial policy and output policy of Algorithm |I|on game G*. By putting
together 17" (- s) over all (, h, s) € [7] x [H] x S, we let %1 : [7] x [H] x § = A(A) denote the
best fixed policies in hindsight on G*. Define ¥, 7* and v*'T analogously for the min-player. Let

pt =S bt and v* = L S0 vF1 be the empirical averages of the best response policies.

To ensure that the knowledge gained from previous games is useful for learning future tasks, we need
to impose some similarity assumptions on the games G. We consider the following similarity metric:

K
Ay = Z (KL (uk’TH,u,*) + KL (Vk’THV*)) .
k=1

Intuitively, since {u’“’t}tem converges to an equilibrium policy for G¥ when T is large, the best
fixed responses *! can be considered as an approximation of the max-player’s NE policy on G*. In
this sense, A, ,, essentially measures the distances between the NE policies of different games. It
considers a set of games G to be “similar” if their NE policies lie in a close neighborhood of each
other. We remark that there might be multiple NE policies (with the same value) in a zero-sum game,
and A, , only takes into account the NE policy pairs that Algorithm [Tjactually delivers.

Our meta-learning procedure proceeds as follows: Within each game G*, we run Algorithm |1|as our
base algorithm (T)) to find a NE of G*. In a new game G**1, the initial policy of Algorithm|lis given



by the following meta-updates in the outer loop (2), which essentially averages the best response
policies of the previous tasks under a-greedy parameterization:

k
]_ ’
ﬂk+1 =% k%l[uk ’T]m and PFH =

| =

k !’
> . 5)
k'=1

In particular, for any vector x € R?, we define its a-greedy parameterization [x], := (1 — a)x + 41
to be a weighted average with a uniform vector 1/d € R? of a proper dimension, where a € (0,1/2).
Since p*:1 denotes a set of vectors, we apply the operator [-],, element-wise to each of the vectors.
The reason for using a-greedy is mainly technical: KL (-||-) is not Lipschitz continuous near the
boundary of the probability simplex, and a-greedy parameterization helps to stay a-distance away
from the boundary. We are now ready to present our sharper convergence rates for meta-learning.
Theorem 2. In a sequence of K two-player zero-sum Markov games, if Algorithm/[l|is run for T
iterations as the base algorithm and @]) witha =1/ \/I? as the meta-updates, we have

K
1 kg 192H® (A, 10(A+ B)logK = 16logTlog(ABK)
— - < z .
I B V¥ R < TR < ©

k=1
Consequently, for any e > 0, T = O(%s(% + ‘“57\/%1{2)) steps on average suffice to find an
e-approximate Nash equilibrium in each game.

When the number of games K is large, the last two terms on the RHS of () become negligible. Hence,

compared to the best-known results O(H? /T') of learning each game individually, Theoremimplies
a significantly sharper convergence rate when the games are similar, i.e., when A, , < KH 2,

4 Meta-Learning for Markov Potential Games

In this section, we study meta-learning for NE in Markov potential games. We show that a straight-
forward refinement to the analysis of an existing algorithm [[15] provides initialization-dependent
bounds. Building on it, in Section[4.1] we first investigate the sharper convergence of meta-learning in
a sequence of similar MPGs. Further, since there exists an optimization objective universally agreed
on by all the players in an MPG (i.e., the potential function), we can formulate the meta-learning
problem in the same way as MAML [20]. In Section by choosing a proper base algorithm,
we establish the non-asymptotic convergence of MAML in the highly non-stationary multi-agent
scenario, without even imposing any smoothness assumptions as in existing works [[17, |18, [30].

4.1 Sharper Rates in Similar Games

To be consistent with existing results in the literature, in this section, we consider an infinite-horizon
~-discounted reward setting for MPGs [43,[3976.15]]. A detailed description of the setup is provided
in Appendix [C|for completeness. Equivalent results for the finite-horizon episodic setting (as we
defined in Section[2)) can be derived in a straightforward way. We choose an existing state-of-the-art
algorithm, namely independent projected Q-descent [[13]], as our base algorithm (I). Specifically, in
an MPG G*, each agent independently runs policy gradient ascents to update its own policy for T
iterations:

w1 (fs) = Projaca, (717 (1) + Q" (s,)) v € (1], ™

where QT is the “averaged” Q-function formally defined in Appendix Let ®(- ; G*) denote the
potential function of G¥*. Through a simple refinement of the analysis in [15], we can establish the
following initialization-dependence bound for our base algorithm (7).

Proposition 1. (Theorem 1 in [[I5]) Suppose that all players in a Markov potential game G* run
4
independent projected Q-descent (1)) for T iterations with o < i) Then, we have

8k3N Amax
T—1
1 . k(GF)(®(mk-T; GF) — ®(mk:0, GF))
— Y NE- kty < ’ ’
= sl = \/ al(1 - ) ,

where 1(G*) is the standard distribution mismatch coefficient for G* formally defined in Appendix@



Proposition [I] immediately implies that if we learn each MPG individually, it takes 7" =

4 . . .
O(W) steps to find an e-approximate NE. To show the effectiveness of meta-learning, we

consider the following similarity metric for a sequence of K games, which measures the maximal
point-wise deviations of the potential functions:

K-1
Aq, — Z max (q)(ﬂ',(Grk) _ (I)(W,Gk+1)) . (8)
k=1

As for the meta-updates, we simply instantiate (2) as ﬂ'f 0 Tl'll»c 5T which lets each agent play

the converged policy in the previous game. The intuition is that after running 7" steps on G¥~1, the
agents will converge to an approximate NE policy of G*~*. Since (8] requires the potential functions
to be close, the converged policy 7%~1T" should serve as a good starting point to search for NE in
G*. We formally characterize such an intuition in the following theorem, which shows the sharper
convergence of meta-learning in a large set of similar MPGs (i.e., when K is large and Ag is small):
Theorem 3. In a sequence of K Markov potential games, if (1) is run for T iterations as the base
4

ffl’T as the meta-updates, then, foranye > 0, T = O( NA"]';?'& ii')“éd;;Aq)))
steps on average suffice to find an c-approximate Nash equilibrium in each game.

algorithm and ﬂ'f’o —m

4.2 Convergence to MAML Objective

In this subsection, we study meta-learning for MPGs under exactly the same formulation as in the
seminal work of MAML [20]]. Let G = {Gj } be a set of different MPGs, where the games are now
drawn from a fixed distribution p that we can sample from. We consider parametric policy classes
where agent ’s policy is parameterized by 0; = {0;(ai|s) € R}scs.q,c4,- We focus on softmax
parameterization where

exp(fi(ails))

al € A; exp(@i(aﬂs))'

Let ¢(- ; G) denote the operator of performing one step of policy gradient update on game G, i.e.,
€(0;G) == 0 + aVP(0;G), where o > 0 is the learning rate. The T-step MAML objective
[20} [18} 130]] can be formulated as

max Fr(0) := Ecp(g) [2 (- (C(6;G)) ... ; G)], )
where § = (01,...,0N) € O, and the operator ((- ; G) is applied T times. Intuitively, MAML tries

to find a good parameter initialization from which running 7" steps of gradient ascents on any new
task G leads to well-performing policy parameters.

o, (a’l|s) = D

Similar to Section 2} the MAML procedure consists of two nested stages. For the inner stage (I)), we

let each agent independently run 7" steps of policy gradient ascents to update its policy parameter H,Et)
on each encountered MPG. It is known (Theorem 5 of [78]]) that 7' = O(1/£?) steps will find an e-
approximate NE for each individual MPG. For the outer stage (2), MAML directly performs gradient
ascents with respect to the meta-objective (9). The gradient of Frr can be written in closed-form as

T-1
VEr(0) = Egpg) l( H (I + aV2<I>(9(t);G)))V<I>(9(T);G)

t=0

. (10)

A detailed discussion of MAML and its instantiation in our problem are provided in Appendix
Most importantly, Appendix @] shows that both the policy gradient V®(8) and the policy Hessian
V2®(0) can be written in closed-form, which allows us to construct unbiased estimators of (T0) from
samples. Despite the fact that the learning agents update their policies independently in an intertwined
multi-agent system, our next result shows that the MAML updates converge to a stationary point
of the meta-objective (9) in a non-asymptotic manner. A key step of the proof is to prove (rather
than assume, as in existing works [17,130]]) that the meta-objective is Lipschitz smooth in the policy
parameter . The smoothness constant can also be written in a closed form (Lemma [I4).

Theorem 4. Suppose that the agents run independent policy gradient ascents with softmax parame-
terization on each encountered MPG as the inner stage, and perform gradient ascents w.r.t the MAML
objective as the outer stage. For anye > 0, K = (4111_\/ WL)*Z 5 iterations of MAML updates can find a
policy 0% such that ||V Fr(6*)|| < e, where L is given in Lemmall4| of Appendix|D|




S Meta-Learning for General-Sum Markov Games

In this section, we consider learning coarse correlated equilibria in general-sum Markov games with
no assumption on reward structures. Similar to Section[3] we start by developing an initialization-
dependent algorithm, followed by investigating the sharper convergence of meta-learning.

Our base algorithm for learning CCE also uses optimistic OMD with stage-based value updates.
Detailed descriptions are deferred to Algorithm[2]in Appendix [E]due to space limitations. Algorithm 2]
follows a similar structure as Algorithm [T} but the output policy 7 of Algorithm [2]is no longer a
state-wise average policy and is instead a correlated policy [3} 44, [33]]. For any correlated policy ,
we use the notion
CCE-gap(m) = max V[ (s1) = V{Ti(s1)
i€ ’ ’

to measure its distance to a CCE. Let 7 denote the total number of stages of Algorithm[2] Similar to
zero-sum games (3)), for any (7, h, s) € [7] x [H] x S, we define the per-state regret for each player

i €N as
end
1 T rt . P
Ja— J J
regha(s) = max o= 3 (a7l =) QR ) (),
Trh z( I )EA(A ) j:tﬁ“”

t

where (7, ; is player i’s Q-function estimate at stage 7. We define the maximal regret (over all states
and players) as reg] := max,ecs max;ea{reg} ;(s)}. The initialization-dependent convergence rate
of Algorithm[2]is established in the following theorem.

Theorem 5. If Algorithm[2)is run on a general-sum Markov game for T iterations with a learning
rate 11 > 0, the output policy T satisfies:

CCE-gap(7) Z Z max Dpg(m) I( |s), 77 4 (-]s)) + 36 N*n” H*.
T7=1h=
In addition, if the players’ policies are initialized to be uniform policies 7], ;(-|s) = 1/A;, Vi € N
and 1 is chosen as = H=2/3T=Y/3(N — 1)=2/3, then we have

12N3 H3 10g TlOg Am’Lx

CCE-gap(7) < 72

(1)

Compared to existing results, Theorem [5 directly associates the convergence rate with the quality
of the initial policy 7. With uniform initialization, the convergence rate in (TI)) has a slightly worse

dependence on T than the best known result O(v/N H'/4/T3/4) [T7]. Such deterioration is due to
the potential lack of a smoothness condition for optimistic OMD that directly connects the stability
of policies to the stability of utility functions (LemmaI8)), unlike in optimistic FTRL. Although we
believe that our rate in (TT)) can almost certainly be improved via a refined stability analysis, we leave
the tightening of it to our future work as it would be a departure from the main focus of this work.

Let 7 and 7*, respectively, denote the initial policy and output policy of Algorithm on game GF.
For player i € A\, by putting together WZI(‘S) overall (7, b, s), weuse 1 - [7] x [H] xS — A(A)
to denote the best fixed policies in hindsight on G*. We consider a game similarity metric defined as

K
1
Z kT||7r ), where 7w} = = E :ﬂf,’r'
k=1

k=1 1i=1

The following theorem presents the convergence rate of meta-learning, which again is sharper than
learning each game individually when the games are similar, i.e., when A is sufficiently small.
Theorem 6. In a sequence of K general-sum Markov games if Algorithm@] is run for T iterations

as the base algorithm and the meta-updates 7% = 15 Zk, ! [t ’T]sz € N are used with

A3/2 A3/2X+H3
(F8m + —2255—)) steps on

a = 1/VK for policy initializations, then, for any e > 0, T 0(53/2
average suffice to find an e-approximate CCE in each game.



6 Simulations

We numerically evaluate our meta-learning algorithms from Sections |3| and |4 on a sequence of
K games. In this section, we evaluate on a sequence of K = 10 zero-sum Markov games and
Markov potential games with two states, two players, and two candidate actions for each player. In
Appendix [F| we further demonstrate the scalability of our methods by providing numerical results on
larger-scale tasks, including a simplified version of the Poker endgame considered in [27] and a 1D
linear-quadratic tracking problem [37] with 4 cooperative players.

1.5 1.00
N --==Individual NE-gap \\ --==Individual NE-gap o o
a 4 \\‘ —— Meta-learning NE-gap al0 ‘\‘ —— Meta-learning NE-gap 0.75 ":0’ °
& \ & \ Xon &
W W \, < 0.50
=2 =05 S e  State sg
= 0.254
0.0 State s;
0 . 0.00
0 250 500 750 1000 0 250 500 750 1000 0.0 0.2 0.4 0.6 0.8 1.0
Iterations Iterations 15
(a) Zero-sum Markov game (b) Markov potential game (¢) NE visualization

Figure 1: NE-gap of policies output by individual learning and meta-learning in (a) zero-sum Markov
games, and (b) Markov potential games. Shaded areas denote the standard deviations. (c) visualizes
the NE policies of the K games in the normalized space [0, 1] x [0, 1] to illustrate their closeness.

We generate the K = 10 games by first specifying a “base game” and then adding random pertur-
bations to its reward function to get K slightly different games. Each of the K games is run for
T = 1000 iterations. To better visualize the similarity level of these games, in Figure[I(c)| we plot
the NE policies of the perturbed zero-sum matrix games at each of the two states for the K = 10
games. We remark that due to the existence of state transitions, the NE policies with respect to the
stage Q-functions can be more diversified than Figure[I(c)} Detailed descriptions of the simulation
setup are deferred to Appendix [

We evaluate the convergences of the algorithms in terms of NE-gap. Figures and compare
the average NE-gap over the K games between individual learning and meta-learning for zero-sum
Markov games and Markov potential games, respectively. We see that meta-learning can utilize
knowledge from previous tasks to attain better policy initialization in a new task and converges to an
approximate NE policy using much fewer iterations.

7 Concluding Remarks

In this paper, we have introduced meta-learning to solve multiple MARL tasks collectively. Under
natural similarity metrics, we have shown that meta-learning achieves provably sharper convergence
for learning NE in zero-sum and potential games and for learning CCE in general-sum games.
Along the way, we have proposed new MARL algorithms with fine-grained initialization-dependent
convergence guarantees. Our work appears to be the first to investigate the theoretical properties
of meta-learning in MARL and provide reliable justifications for its usage. As for the limitations,
our convergence rate for learning CCE (Theorem [5)) is slightly less competitive than the best-known
results when our policies are initialized conservatively, which might be improved via a refined policy
stability analysis. Other future directions include further generalization of our results to alternative
game similarity metrics and broader types of games (e.g., stochastic Stackelberg games).
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Supplementary Materials for “Multi-Agent
Meta-Reinforcement Learning”

A Technical Lemmas
Lemma 1. Let z,y € R? be two probability distributions lying in the d-dimensional simplex for

d > 2. Fora € (0,1/2), let [x],, = (1 — a)x + F1 denote a weighted average between x and
a uniform vector 1/d € R of a proper dimension. Denote by KL (x||y) the Kullback—Leibler

divergence between x and y. If y; > «/d, Vi € [d], then we have
d
L (z|ly) < KL (Z||y) + 4aln e
Proof. From the three-points identity of the Bregman divergence (Lemma 3.1 of [9]),
KL (z|ly) — KL (Z]|ly) = KL (z||Z) + (InZ — Iny, z — &) (12)
The first term in can be bounded by

1 1
L (z||Z) = Zaclln— szln 1famz+3 _;xlln Slnl—a'

By the Holder’s inequality, the second term in (I2)) is bounded as

(InZ —Iny,z —2) <||InZ —Iny| |z — 2|, - (13)

We handle the two terms in (I3 separately. First,

z;
In —

|[InZ — Iny||, = sup
Yi

i€[d]

z; i l-—a+g d
< sup max{lnm,lng{} < lnﬁ <In-—,
icld] yi & a/d o

where the second to last step uses the facts that a/d < #; < 1 and o/d < y; < 1,Vi € [d]. The last
step is simply due to the fact that d > 1. To bound the second term in (I3), notice that

lz =&y = e = (1 = @)z = al/d]}, = a||z = 1/d],, <20

Putting everything together, (I2) can be bounded by

1 d d d
KL (z]|Z) + (In& —Iny,z — T) Shﬁ1 +2aln—<a?+a+2aln— <4aln—,

— o (6% (0%
where the second to last step is derived using the Taylor expansion, and the last step holds due to the
assumptions that & € (0,1/2) and d > 2. This completes the proof of the lemma. O

Lemma 2. (Proposition B.1 of [33]) Let R : © — R be 1-strongly convex with respect to ||-|| and

consider any 01, . .. ,0k € ©. Then, when run on the loss sequence a1 Dr(61,),...,axDr(0k,)
for any positive scalars a1, . . .,ax € Ry, the follow-the-leader (FTL) algorithm obtains regret

K
aiGy

9
k= 1O‘k+22k/ 1 O/

for C such that ||0]| < C'||0||,,V0 € ©, D = maxg gco |0 — 0’|, the L2 diameter of ©, and Gy,
the Lipschitz constant of Dg(0y, -) over © with respect to ||-||.

regy, < 2CD

Lemma 3. (Lemma 2 of [18]) For any i € {1,...,n}, let f; : R* — W, be a continuous function
with W; € {R,R? R4 RIX4} sych that g(0) = f,.(0) ... f1(0) is well-defined. Suppose f; is B;-
bounded and L;-Lipschitz, i.e., ||fi(0)|| < B; and ||fi(0) — f;(0")|| < L; |0 — 0'||, V0,0 € R4
for some non-negative constants B; and L;. Then, g(0) is Lipschitz with constant L, =
S (Li Ty B) e 19(0) — g0 < Ly 119 — 0/, 6,6 € R,
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Lemma 4. (Lemma 3 of [[I8)]) For any i € {1,...,n}, let f; : RY — R™ be a continuously
differentiable function that is B -bounded and L ¢-Lipschitz continuous. Let p(-; 0) be a distribution
on { fi}1"_, where the probability of drawing f; is p(i; 0). Suppose there exists a non-negative constant
By, such that |V logp(i; 0)|| < By, for any i and 0. Then, the function g(0) = Ey,.9)[f(i;0)] is
Lipschitz continuous with constant By B, + L.

Lemma 5. Consider a block diagonal matrix C that is a square matrix such that the main-diagonal
consists of N block matrices A; € R ¥4 Ay € RINXAN and all off-diagonal blocks are zero
matrices. Then, it holds that ||C|| < max;<;<n ||4i]-

Proof. We prove the lemma via induction on V. For the induction basis N = 2, we need to show

jon=[[5 2)| < maxtia . jasp.
)

2 2 2 2 2 2 2 2
= [[Avz]” + Ayl < A 2™ + | A2lI™ ly]]™ < max{[JAw]]”, [[ A2},

2

To see this, let z € R% and y € R% be such that = ||z||* + |Jy||* = 1. Then, by the

definition of the matrix norm,

3]

where the last step uses the fact that ||z||* + ||y||* = 1. This completes the proof of the induction basis
N = 2. Now, suppose that the lemma holds for N = k—1. We next show that it also holds for N = k.

A 0 ... O
LetC = . . Note that we can rewrite the matrix as C' = [ ]6_1 Ak] , where
0O 0 ... A
AL 0
Cr1=1| 1 -, is a block diagonal matrix consisting of k¥ — 1 matrices. Invoking the
0 ... A

induction hypothesis for N = k — 1, we know that ||Cy_1 || < maxi<;<g—1 ||A;|. Finally, using the
induction hypothesis for N = 2, we conclude that ||C|| < max{||Cr_1||, || Ax||} < maxi<;<k || 4]l
This completes the induction proof. O

Lemma 6. Consider a block matrix A() with N x N blocks parameterized by § € R%:

Ai(0) ... Ain(0)
AN)l(G) AN,N(H)

where A; ;(0) € R4*4 ¥1 <4, j < Nandd = Zivzl d;. Suppose that the norm of each matrix
block is Lipschitz continuous with respect to 0, i.e., ||A; ;(0) — A; ;(8")|| < L; ;|0 — ¢'||,V0,0" €
R 1 <i,j < N. Let L = max{L; j : 1 <i,j < N}. Then, the norm of A(9) is also Lipschitz,
Le.,

IA0) = A@)I| < NLo —0']|,v0,8' € R™.
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Proof. Letx € R% be avector such thatz = [z] =] ... x]\—,]T and |[z]|> = XN [l =1,
where z; € R% V1 < i < N. We have

N
> =1 (A1;(0) — A1 ;(0)) z;
2 :
I(A(0) — A(0"))z||” =

S (Aw s (6) — Aw s (0) 2,
N N

=> H D (Ai(0) = 4,,5(60) xsz
i=1 j—l
<N ZZII 03 (8) — A (8")
i= 1] 1
<NZZIIA 03 (8) = Aug (09 Nl 112,

where the first inequality follows from the Cauchy-Schwarz inequality, and the last step is due
to the definition of the matrix norm. Applying the Lipschitz continuity of each matrix block
[[Ai,(0) = Ai; (0[] < Li; (|0 — 0[] yields

1(A(6) — <NZZIIAu = Aus (O [l
=1 j=1
N N
2
SN D L6 =0 )

i=1 j=1
<NZL2 0 - 0",
where the last step uses the facts that L; ; < L,V1 < 4,5 < N and Z;\le HxJHz = 1. Since the

above condition holds for any vector = with ||z|| = 1, we know from the definition of the matrix
norm that

|A(6) — A(@")|| < NL |6 —¢'||,v6,6" € R
This concludes the proof for the Lipschitz continuity of A(6). O

B Proofs for Section

B.1 Proof of Theorem/[]

We introduce one more notation before presenting the proof. For each iteration ¢t € [T] and step
h € [H], define the Q-function estimation error as

5 = 1Q5" — Q-
Note that since Algorithmperforms stage-based value updates, the value estimation error &}, does
not change within a stage 7(¢); that is, 6!, takes the same value for all ¢ € [¢5", #<19]. For this reason,
we will sometimes abuse the notation and simply use ¢7 to denote the estimation error for a stage
7. In the rest of this paper, we will write 7 and d}, interchangeably since one of them will be more
convenient than the other in certain contexts.

Further, recall that for any (7, h, s) € [F] x [H] x S, the per-state regrets for the two players are
defined as

tend
regy 1(s) == max <,u — 1l Qv >(s)
h,1 *eA (A) L j;m h h h
tend
T 1 j
regj, 5(s) := max o Z <V — vy 7(Qh) /~Lh> (s). (14)
v teA(B) Lr =t
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Note that the best response policies 1’ T(-|s) and u,:’T (+|s) should be state-dependent, but we will
oftentimes omit the dependence on s for notational convenience. This leads us to the initialization-
dependent convergence rate of Algorithm[I] which we re-state and prove as follows.

Theorem[1} If we run Algorithm[Ion a two- player zero-sum Markov game for T iterations with a
learning rate < 1/(8H?), the output policy pair (ji, /) satisfies:

H 7

3
NE-gap(. 7) < a3 3 mas (Dr(uf (1), 37, (15)) + Da(vi (). 7(1s)

T
h=171=1

In addition, if we initialize the players’ policies to be uniform policies, i.e., 4}, (-|s) = 1/A and
vl (-|s) =1/B,Vs € S, € [T], h € [H], we further have

768 H" log T log(AB)

NE-gap (i, 7) <
gap(fi, 7) < T

Proof. The proof of the theorem follows from a series of lemmas, which we state and prove in the
next few subsections. In particular, we first show in Lemma([7]that upper bounding the NE-gap breaks
down to controlling the per-state regrets regj, ; (s) + regj ,(s) and the value estimation errors 7, in
a similar fashion as in the analysis of [[72]. For this purpose, Lemma[§] provides an upper bound on
the per-state regrets, while Lemma[9]and Lemma[I0]together bound the value estimation error via a
recursive argument. The rest of the proof follows by putting all the aforementioned results together.

Specifically, for n < 1/(8H?), by plugging in the results of Lemma and Lemma@] to Lemma we
obtain that

NE-gap(f, ) %ZZL max (regh 1 (s) + regh o(s) ZZL o7,

h=171=1 thl

16H ZZmaX (DR ) ,uh(| ))+DR(VZ’T7’7}C('|5)))
h=171=1

192H2 TR tht pre T—h it s
ZZ Z max(DR ur; + T i h+h(‘ ))+D (Vh’ + T o h+h(|s)))

=17=1h'=h+1
192H2 .
§:§Zj§:1ﬂax(DR,4,h+hT'; KR CL) £ D B )
h=171=1h'=h
192H3 u it o
> D max (DR MANTACE ))+DR(Vh’T7vh(~Is)))7 (15)
h=171=1

where the last step is by switching the order of counting. This proves the first claim in the Theorem.

We now proceed to establish the second statement. Recall that we chose the negative entropy as
the regularizer R. In this case, the Bregman divergence Dg(-, -) reduces to the Kullback-Leibler

divergence. Since ,uhT lies in the simplex, when we initialize /1] (-|s) = 1/A to be a uniform
distribution, we naturally have Dp (1, T A7(-]s)) <log A,Vs € S, h € [H]. A similar result holds

T ~7

for Dr(v,’", 7] (:|s)). We can hence obtain that

max (Dp(ur ', 5, (1s)) + Di(vy ', 7 (1)) < log(AB). (16)

To prove the statement, it remains to upper bound the total number of stages 7. Recall that we have
defined the lengths of the stages to increase exponentially with L, = |(1 4+ 1/H)L.|. Since the
T stages sum up to 7' iterations in total, by taking the sum of a geometric series, it suffices to find
a Value of T such that (1 +1/H)™ > T/ H. Using the Taylor series expansion, one can show that

(1+ ) > e — 5% . Hence, it reduces to finding a minimum 7 such that
T/H T
_ > 17
(¢ 2H) ~H a7
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One can easily see that any 7 > - (c;g/QT) satisfies the condition. Together with (I3) and (I6), we

obtain that 151
°logT
NE-gap(s, 7) < o118 L log(AB).

This completes the proof of the theorem. O

B.2 Supporting Lemmas for Section[3]

Before presenting the supporting lemmas of the section, we remark that we will reload the notations
i, and v}, with some slight abuse of notations. Specifically, when ¢ is the last iteration of a stage, s},
can be used to denote not only the policy at iteration ¢, but also the initial policy of the next stage (see
Line[I0] of Algorithm[I)). In the following proofs, it should be clear from the context which specific
policy p}, refers to. A similar rule applies to v},.

Lemma 7. Let (fi, V) be the output policies ofAlgorithm Then,
H T

H
o 2

NE-gap(fi, 7) < TZZL max (vegf 1 (5) + reg »(s)) + TZ L6},

h=17=1 h=17=1

Proof. From Lemma C.1 in [77], we know that
NE_gap(laa D)
=V (s1) = V7 (s1) + Vi (s1) = VT (s1)
<23 mas { mas [ (uh, Qion) — (v} (@3) )] <s>}

h=1 T2

1
=2 Zmax{mwg T

MH
S

R PARR O R AT <s>}

h=1 BpsVh t=1
H H
T(t T(t
SQnguX{rgaxTZ[uh, W) = wh @ T, } } TZZ‘SZ’ (18)
h=1 Fho¥n h=1t=1

where the last step is by adding and subtracting the estimated values Q h s ). and invoking the definition
that 6}, = HQT(t) @y || . To further bound the first term in (8], notice that

1 . .
max {max 7 [(ML, Qh(t)l/f) <V}Tu (Qh(t))T/li,)] (5)}
7 £

S%stax max Z [(Mh 7Qth> <Vh ,(QR) Mh>} (s)

Tt Tt

=1 Ky sV j=tsan
1
<7 Z L max (regh 1 (s) + regh o(s)) - (19)
T=1

The first step holds because the LHS uses a fixed pair of best responses (M;fw 1/,:) for the entire T’

iterations, while the RHS uses a separate best response pair (u;’T, I/;L—’T) for each individual stage 7
and then puts them together. The RHS clearly upper bounds the LHS as the RHS maximizes over
each stage separately. The last step in (I9) holds due to the definitions of reg] ; (s) and regj, ,(s) that

tend

Qi) = 7t @ Tl (9):

reg, 1(s) +regy o(s) = max

To control the second term in (I8)), we use the fact that with stage-based value updates, the value
estimation error 4} does not change within a stage. Therefore,

— tend " 7
EDS)ILTED 3D ) DRI 3 A3 20)
h=1t=1 h 17=1 j=tstart h:l T=1
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Finally, substituting (T9) and (20) back to (I8 completes the proof. O

Lemma 8. For every stage T € N, every step h € [H } and every state s € S, the per-state average
regret is bounded by:

end

T, ~T 277H2 . j j—1 2
vegh 1 (s) S——Dr(uy s (1) + == > W19 =119
T j=tsar
end
2
8L ZHuh ()= w19 1)
TI ] tAIan‘
tend
oy 277H - 1
reg o(s) <——Dr(p 7 (1) + 1 3 i 19) =7 19)]|
T j=tstart
1 tz:xd 5
~or 2 et i) (22)
jft.;{an‘

In particular, for n < 1/(8H?), we further have

regf1 () + e o(s) <~ (Dl (19) + Da(vy ! 7 (1s)

end

- 2 il (|| V(1) = v Cls) I3 + D Cls) — w7 C1s)3)

j= tmm

(23)

Proof. We prove the regret bound for the max-player, i.e., reg, 1(8). The bound for the min-player
holds analogously. Notice that the policy update steps in Algorlthmm are exactly the same as the
optimistic online mirror descent algorithm [33}[62]], with the loss vector g* = [Q} v} ](s, -) and the
recency bias M* = | ,Tlufl '1(s, -). Since our stage-based value updates assign equal weights to each
iteration, we end up with a classic no-(average-)regret learning problem instead of a no-(weighed-)
regret learning problem as in [72| [77]. This allows us to directly apply the standard optimistic OMD
results (e.g., Lemma 1 in [55]] and Proposition 5 in [62]) to obtain

tend

regf, () = max = > (it - Q) ()

e br T
1 & )
rt or 0 P o e
<op Drle ) + 7 3 @k - @i 6| (24)
T T j=tsan oo

end

S e 19— w19

1
j=tstart

SnL (25)

To further upper bound the term in (24)), notice that
2 2

i 4 -
| [@rvd = Qa7 ] ()| <282 Wb 19) =i 1 9)]

where we used the Holder’s inequality and the fact that [|Q7, (s, )| ., < H. Substituting the above
result back to (23)) yields

)

tend

T, ~T 77 -
reghl( ) < 77L (Mthﬂh(‘ ))"‘f Z 2H?
sztsT(an

A1) =77 1))

tend

Cls) = 1))

87)[/ j= tsmr(
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This completes the proof of (ZI). The regret bound in (22)) can be shown via symmetry.
Combining (ZT) and (22)) leads to

regy, 1 (s) + regj o(s)

< (Dl 37.01s) + Dalofl 7 (1))

tcnd
. (2H?p 1 : - 4 -
+ ) (L T )(vzus)—uz L)+ i Cls) = s Cls)I)
J=ts T r

When 1 < 1/(8H?), we further have

veg),  (s) + regf, o(s) <—— (Dr(up i (1)) + Dr( ! 7 (1s)))

“nls

end
T

- Z i — (IACls) =13 Gl Cls) — s Cls)IR)

tslarl

This completes the proof of the lemma. O

Lemma 9. Withn < 1/(8H?), for any iteration t € [T) and any step h € [H|, we have that

H

7(t)—h'+h,t ~7(t)—h'+h h' +h ~'r h' +h
max (Dp(ur " O L)) 4 DO O s )
h’=h+1

Proof. In the following, when we consider a fixed iteration ¢ € [T'], we drop the notational dependence
on ¢ and simply use 7 (instead of 7(¢)) to denote the stage that iteration ¢ belongs to. For any
h € [H — 1], we can use Lemma (similar to Lemma C.2 of [77]) to establish the following
recursion for the value estimation error:

5t < 6;& + reg;ﬂ, (26)

where recall that reg], = maxses{reg], ; (s),reg] 5(s)}. Using Lemma we can upper bound the
individual regrets regj | (s) and regj, ,(s) by

end

nt o 2H? <~ || j—1 ’ 2
regp,1(s) < 77L (Mhnuh('))"’_Tz vip(1s) = vy () L (27)
T j=tstart
9 end
ot 277H T . . 2
regh o(s) <——Dr(p 7 (1) + Z— 3 il ¢ 1) = 19| @®)
T j=tstart

where we have dropped the negative terms in (ZI) and (22). Following a similar approximate non-
negativity argument as in Lemma 5 of [72]] (reproduced in Lemma [IT|for our stage-based approach),
we obtain that

fegf:,l(s) + regzﬁg(s) > —24y.
Together with (23) in Lemma(8] we obtain that

end

mH? < ; -
3 (I Cls) =2 Cl) I+ g Cls) = i Cls)IR)
T j=tsart
5T 1 7 ~7 T
<+ amyrs (Prlar iR C1s) + Dr( 771s))
Since the above inequality holds for any state s € S, substituting it back to (27) and (28) yields
Tt ~7 Tt ~7 67‘
veg), < max s (Daluf " i, (19)) + D, 7 (1s))) + 2. (29)

T
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We can further substitute the regret bound above back to the recursion[26]to get that

T Lt ~7 T
op < L. max (DR(MhH T7Mh+i( |s)) + DR(Vh+1 i Vh+1( ‘3))) + (1 + )5h+%7 (30)
where we used the fact that the value estimation error 8} does not change within a stage T since
we perform stage-based value updates. Using a backward inductive argument (starting from the

induction basis that 67; = 0, V1), the above recursion in (30) leads us to the following result:

H h'—h—1

T 3 1 T ~T T— ~T—

< > g (13 )  max(Drup () + Dalv L 7))
W1 2’1’]L-,—,hl+h H S

1 200 =h) i ~ N ~
(1+ d) e (DG ) + Dl 1)
=h+1

3 H 1 2H
(1+H> max (DR(;L;, WAht G h(s)) + Dy (vl Mt oo |s))>

12 T— ~T T— ~T
<or > max (Drlu AT Cs) + Dr L () 6D
T h'=h+1

where the second step uses our choice of the stage lengths that L, = |(1+ 1/H)L,|, which

further implies that
1 N Wk
Lr—pin — L H .

The last step in (3T)) is due to the fact that (1 + 1/H)H < e ~ 2.71828. This completes the proof of
the lemma. O

Lemma 10. (Value estimation error recursion) For any iteration t € [T and any step h € [H|, we
have the following recursion for the value estimation error &} :

t)—1 t)—1
o8 <o wregr

Proof. The proof essentially follows a similar procedure as that of Lemma C.2 in [77]]. Let 7 = 7(¢).
For any (h, s,a,b) € [H] x § x A x B, we know from the definition of @)}, that

*(s,a,b) =rp(s,a,b) + max min Py [y 1QF v s,a,b
Qi ( ) =7n( ) s N (A) v e A (B) h [Mhﬂ@hﬂ h+1]( )

tuul

<rn(s,a,b) —&—Lr’laxPh Mh+1Qh+1 Z Vh+1 (s,a,b)
141
f%l&l’l
tcnd
<rn(s,a,b) + Mfilff(e Z P [Nh+1Qh+1Vh+1} (s,a,b)
j t\ldl’l
e
<rn(s,a,b) +,f£‘flxe Z (Ph [uh+1Qh+1yh+1} (5,a,b) +[| Q41 — Q751 )
] t\ldrl

end

where the second step holds because % E;T tfwn vy, +1( |s) € A(B). Using the definitions of
reg; Dand oy, Ji, the above inequality further leads to

tend
* 1 i T— j
Qh(s,a,b) <rp(s,a,b) + ., Z by {(Niﬂ)T h+%Vi+1] (s,a,b) + 5h+1 +mghﬂ
T— j=tsart

<Q7(s,a,b) + 5h+1 + regh_s_1
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where the last step is due to the value update rule in Algorithm[I] This implies that
Q@ (s,a,0) = QR(s,a,b) < &7 +regi ]
Using a similar argument, we can show a symmetric result for the min-player:
Q;<S’ a, b) - QZ (S, a, b) < 6;:& + reg,:jr} :
Combining both directions yields the desired result. O
Lemma 11. (Approximate non-negativity) For any T € [T] and h € [H], we have that

regy, 1(s) + regj, o(s) > —20j.

Proof. This lemma can be considered as a stage-based variant of Lemma 5 in [72]. From the
definitions of regj, ; (s) and regj, ,(s), we have that

regy, 1(s) +regy o(s)
tend

= max Y ((ptand) - (it @ Ti))

,LL;;’T,V;;’T L.,_

J=tstan
2Send
1 - T, * T, T3
:Nf,l?afifLT[,Z ('t @avh) = (it @b )) ()
h Yh j=tstan
tend
+ > ((urt@r - @iwh) - (i @ - Qi) i) <s>]
j=tm
end
1 - T, * ] T * j T
> max — | > ((uptQid) = (i @0Tuh)) ()| - 207, (32)

j=tstart

where the second step is by adding and subtracting the same term, and the last step uses the definition
end . end .

that 67, = [|Q}, — Q} |- Since both 7-- Z;T:ts;m 117,(-|s) and 7= SU e V1. (+]8) are valid probability

distributions over the action spaces, the first term in (32)) is always non-negative:

y —fstart
J=t7

end

o DN (TR AR CARCANTANE

max
#;’T,D;’T j=tstart
tend tend
1 T ) 1 T .
_ 7,1 7,1 *\T
- max <uh @ty yg>><s>—<uh @ (£ X uz>><s>
h Yn ]:tfﬁ“" j:tsTmn
1 gend 1 e 1 gend 1 tend
2<<L > )i > yz)><s><(L > )@ (% u£)>(s)
T j=tsan T j=tsan j=tsan T j=tsan
=0.
Plugging the above inequality back into (32)) completes the proof. [

B.3 Proof of Theorem 2|

Proof. First, recall the definitions of (i*, 7%), (¥, %) and (u*T,v%1). Since we use a negative
entropy regularizer R, the Bregman divergence Dg(+, -) reduces to the Kullback—Leibler divergence.
Using these notations, our convergence results of learning in an individual zero-sum game G*
(Theorem|[I)) can be written more succinctly as

192H3
< -

NE-gap(ii*, 7*) < —— (KL (u"1]|3") + KL (v51]7))
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where for ease of notations, we write

KL (1)) szaxKL(’”*mn A

h=171=1

s)) :

Here, i)"™""(:|s) represents the value of 1} (|s) in game G¥. The notation Dg(v*T, 7%) can be
decomposed in a similar manner. By running Algorithm[TJon a sequence of K games, we have that

3 K
_ ZNE—gap =k —k) < 121}{ Z (KL (Mk T
k=1

In the followmg, we will focus on the term for the maximizing player in (33). The results for the
minimizing player’s term can be obtained via symmetry.

i*) + KL (V5T 75)) . (33)

Recall the notation that [x], = (1 — a)x + 41 for x € R%. By applying this notation entry-wise to
each probability distribution in p*t and invoking Lemmal we obtain that

A
kT =
E KL (p ||u E KL ( ) +4H7aln ~ (34)

Notice that the conditions of Lemma|I]are satlsﬁed here because we select our initial policies to be

k= =71 - i Z, 11 [uk,’i]a, which assigns a probability of at least a1 /A to each action. Adding and

subtracting the same term leads to

ZKL Jalli2*) mmZKL *alln) +mmz (KL ([1""]allA*) = KL ([1" 1))
) 8A(1+InK)

< KL ([u*1], _ 35

_Hﬂn; (" Mallp) + - : (35)

where the minimum g is taken over all policies of the form of i : [F] X [H] x & — A(A). We now
turn to establish the second step in (33), which reduces to bounding the following regret where the
loss functions are given by the Bregman divergences:

reg —mmz (KL ([ all*) — KL (1" Tallp)) -
k=1
It is known that the unique minimum of Y%, _, KL([u*"1],]|-) is attained at i ZZ, [T, (see

Proposition 1 of [3] for a proof of this claim). Therefore, by letting i* = 25 Sk [1*"1]a, we
are essentially running the follow-the-leader (FTL) algorithm (separately for each entry (7, h, s) €

[7] x [H] x S) on the sequence of losses defined by Zi{:l KL([*1]4]|-). We can then invoke the
logarithmic regret guarantee of FTL with respect to Bregman divergences, which was established
in [35] and was reproduced as Lemma2]in Appendix [A]for completeness. To show that Lemma|2]
is applicable, we remark that the Kullback—Leibler divergence is not Lipschitz continuous near the
boundary of the probability simplex, which breaks condition required by Lemma 2] However, by
restricting to policies of the form [u], = (1 — a)u + §1, which is at least %-distance away from
the simplex boundary, the Kullback-Leibler divergence is indeed Lipschitz contmuous within this
& restricted domain. One can show that the Lipschitz constant of each entry of KL([p"1],|-) is
within the %-restricted domain. This allows us to apply Lemma to obtain the result in (33).

Moving forward from (33), we again apply the property that the unique minimum of
Zle KL([u k’T] ||-) is attained at ;1 = - ZkK 1 [#* 7] 4, which leads to

8A(14+In K
ZKL k1,1 5%) <mmZKL ]a||u)+¥

SA(l+InK
| B0 )

=

(1—a) Y KL (u*T)|u) + BAU+K) (36)

(0%
k=1

IN
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where the second step uses the definition that y* = & Z kel p*:t, and the last step is by the (joint)
convexity of the Kullback—Leibler dlvergence Substltutlng (36) to (34) yields

A(l+In K A
—ZKL ") ZKL ) 78 U+E) | pram?,
o
By a similar argument, we can show an analogous result for the minimizing player:
K
1 8B(1+InK B
= kz KL (v1]7%) < ZKL ! % 4HFaln—
Substituting the above results back into @]) and using the definition
K
Dy = (KL (p5H]|u*) + KL (51)0))
k=1

we obtain that

ZNE gap(ii*,v") <

192H3 10(A+ B)ln K
By + =

_ AB

Further using the conditions that o = 1/+/K and 7 < 4H log T (see (T7)) for a proof) yields

192H3 (AW 10(A + B)log K N 16H? 1ongog(ABK)>

K
1
—E NE-gap(g*, 7%) <

This completes the proof of the theorem. O

C Infinite-Horizon Discounted Markov Potential Game

To be consistent with existing results in the literature, we consider an infinite-horizon y-discounted
reward setting for MPGs [43| 139, [76| [15]. An N-player, infinite-horizon, discounted stochas-
tic (or Markov) game G is defined by a tuple (N, S, {A;}¥,, P, {ri}N 1,7, p), where (1) N =
{1,2,..., N} is the set of players (or agents); (2) S is the finite state space; (3) A; is the ﬁmte action
space for agenti € N3 (4) P: S x A — A(S) is the transition kernel, where A = x¥ | A, is the
joint action space, and P(-|s,a) € A(S) denotes the distribution over the next state fora € A; (5)
r; : S x A — [—1,1] is the reward function for agent ; (6) v € [0, 1) denotes the discount factor; and
(7) p € A(S) is the initial state distribution. Both the reward function and the state transition function
depend on the joint actions of all the agents. We use a; € A; to denote the individual action of agent
i € . The subscript —i to denotes the set of agents excluding agent 4, i.e., N\ {i}. We can rewrite
a = (a;,a_;) using this convention. Let S = i = |Ai|, Vi € N, and Apax = max;en A;.

A (Markov) policy m; : § — A(A;) for agent ¢ € N is a mapping from the state space to a
distribution over the action space. We let agent i’s policy be parameterized by 6; = {6;(a;|s) €
R}ses,a;c4;, and denote the policy by my, to emphasize such parameterization. Important ex-
amples include direct policy parameterization 7y, (aZ\ ) = 6;(a;|s) and softmax parameteriza-
tion mp, (a;|s) = exp(¢9i(a7;|s))/2:a rea, exp(bi(ails)),Vs € S,a; € A;. Let ©; denote the

parameterization—dependen space where 0, takes values from, and let © = x¥,0,. A joint
(product) policy w9 = (7, , ..., T, ) induces a probability measure over the sequence of states and
joint actions. When the policy parameterization scheme is fixed, we sometimes denote a policy 7y
(resp. mp,) simply by its parameter 6 (resp. 6;). For a joint policy § = (61,...,0xn), and for any
s € S and a € A, we define the value function and the state-action value function (or Q-function) for
agent ¢ as follows:

Ve(0;G) :=Egc {thn(st,cﬁ) |0 = s} , (37)

t=0

Qi"(6;G) i=Fo g [thrxst,at) |50 = 5,0 = ]

t=0

"For example, direct parameterization requires that 65,,, > 0 and Zai cA, Os,0;, = 1,Vs € S,a; € A,

while softmax parameterization allows for ©; = RISHAL
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For each agent i, by averaging over the other agents’ policies, we define the averaged Q-function

Q""" of a joint policy § = (6;,0_,) forany s € S, a; € A; as:

QUO:6) = 3 0oi(ails)Q ) (6:6).
a_;€EA_;

With a slight abuse of notation, we write V/(0;G) = E,,[V;*(6;G)| for a state distribution
p € A(S). We sometimes also suppress the notation of G when it is clear from context.

Each agent seeks to find a policy that maximizes its own cumulative reward. The notion of Nash
equilibrium in such an infinite-horizon discounted reward setting is defined as follows.

Definition 1. (Nash Equilibrium). For any € > 0, a joint (product) policy 8* = (07,0*,) is an
e-approximate (Markov perfect) Nash equilibrium of a game G if

ViE(07,075G) 2 ViE(6:,075G) —e,Vie N,b; € ©;,5 € S.
In the infinite-horizon setting, a Markov game G is a Markov potential game (MPG) if there exists

a global potential function ® : © x § — R, such that for any state s € S, any = € N, and any
9179: c (")i, 671' S ("),7;:

Dy(0;,0-4;G) — ©4(0;,0-1:G) = V;*(0:, 01, G) — V;*(6;, 04, G). (38)

Intuitively, MPGs capture the variations of the agents’ individual values by a single global potential
function. MPGs cover Markov teams [36]] as a special case, a cooperative setting where all agents
share the same reward function r = r;, Vi € N. We also write ®(6; G) := E,,[®,(0; G)] for the
initial state distribution p € A(S). By linearity of expectation, ®(60;,0_;;G) — ®(0.,0_;;G) =
VP (0;,0_i;G) — V/(6;,0_;; G). One can easily show that there exists a constant @, € [0, %],
such that |®(0; G) — ®(0; G)| < Ppax, V0, 8’ € O. Finally, we define the discounted state visitation
distribution of policy 6 on game G as

df,(s;(G) =(1- ’y)IEsoNpZ’ytIP’97¢;(st = s|sg).
t=0

Subsequently, the distribution mismatch coefficient of game G is defined as x(G) =
supgee |y (- ;G)/pll . For aset G of games, we let £ = supgeg £(G).

D Supplementary Material for Section 4]

D.1 Proof of Theorem[3

Proof. Proposition [I]implies that if the agents run projected Q-descent on the Markov potential game
GP* for T iterations, we have

K(GP)T(2(0%T; GF) — 2(6%°,G*))

T-1
max (max VP, 01 GF) — vP(oF, ekf;(@’f)) < \/

= ieN \0.€0; - a1l —7)2
(39)
From the Cauchy-Schwarz inequality, we have that
1 K 1 K
7 Z \/@(kaT; Gk) — ®(0%0;GF) < e (B(OFT; GF) — D(+:0; GF))
k=1 k=1
1 K-1
< % <2q>max + Z (®(OFT; GF) — q)(gk+1,0;Gk+1))>
k=1
1 K-1
< ? <2q)max + (‘I‘(Gk’T, Gk) — <I)(t9k’T; GkJrl)))
k=1




where the third inequality uses the outer stage update rule that ¥ 10 = ¢%T and the last inequality
follows from the definition of the similarity metric Ag. Plugging the above result into (39), we have
that

11 K T-1
> max <max V(6 6%EGRY — vl oMt G’“))
ieEN \0,€0;

< K(2Pmax + Ao) < 8KAIN Amax(2Pmax + Aa)
—\ a(l —v)2KT — (1—-7)8KT ’

. . . . 1—~)4
where in the second inequality we set the learning rate as o = %. Therefore, for an average

game, T = O (NAm?Ffiq;‘;’ﬁangq’)) steps in the inner stage suffice to find an e-approximate Nash
equilibrium. O

D.2 Model-Agnostic Meta-Learning in Markov Potential Games

In what follows, we study meta-learning in MPG under the same formulation as MAML [20, |17, 30].
Let G = {G’} be a set of different infinite-horizon discounted reward Markov potential games.

The games are drawn from a fixed distribution p that we can sample from. Each game is defined

by atuple G/ = (N, S, {Ai} N1, PP, {r)}N.|,~, p7), where we assume without loss of generality

that the games share the same agent set, state & action spaces and discount factor, but can have
different transition and reward functions and initial state distributions. MAML tries to learn a good
initialization from which running one or a few steps of gradient descents/ascents with respect to a
new task lead to well-performing model parameters. In the case of multi-agent meta-reinforcement
learning with one gradient ascent step, the problem can be formulated as

max Fi(0) :=Egp) [® (0 +aVP(0;G);G)], (40)

where o > 0 is the step size of the policy gradient update. Such a formulation can also be extended to
multiple steps of policy gradients. Let ((- ; G) denote the operator of performing one step of policy
gradient update on game G, i.e., ((0;G) := 0 + aV®(6; G). The T-step extension of the objective
([@0) can be written as

max Fr(0) := Egpg) [® (¢(.-. (C(6:G)).... 1 G)], (41)

where the operator (- ; G) is applied T times.

Optimizing the multi-step MAML objective typically involves two nested stages: The inner stage
(or base algorithm) runs multiple steps of gradient ascents for each individual task, while the outer
stage (or meta-algorithm) is an iterative process that updates the meta-parameter 6 over different
tasks. Specifically, suppose the outer stage runs for K iterations. Let #* denote the value of 6 at the
beginning of the k-th iteration of the outer stage. In each iteration, we sample games from the set G
according to the distribution p. For each individual game G € G encountered during iteration k, the
inner stage runs 7' steps of gradient ascent (or its variants) on it:

0P L(G) « h(0M(G); G), for0 <t < T — 1, (42)

where 6%°(G) = 6*,YG € G. We often suppress the notation of G in #**(G) when there is no
ambiguity. Finally, the outer stage updates the meta-parameter by

08— w(pk, G), (43)

using a certain update rule . The meta-parameter #* 1 is then used as the initialization %10 for
iteration k + 1. For simplicity of presentation, we present our results in the same setting as in [[66]]
where G consists of a finite set of M games and p is a uniform distribution. Our results can be easily
extended to the settings where there is an infinite number of games and p is a generic probability
distribution, as has been done in existing works [17} [18 30].

In the following, we develop a meta-learning procedure (¢, ¥) that finds a stationary point of
the meta-objective while at the same time converging to an approximate Nash equilibrium
for each individual game encountered, assuming a sufficient number of policy gradient steps are
taken in each game. We focus on softmax parameterization where each agent’s policy is given by
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mo, (ai|s) = exp(6;(a;|s ))/Za rea, €xp(0i(ag]s)), Vs € S,a; € A;. In the inner stage, each agent
independently runs gradient ascents with respect to its own value functions to update its parameters.
Specifically, on each game G € G encountered during the k-th outer iteration, agent ¢ updates its
policy parameter 6; by

011 (G) — 0P (G) + aVy, VP (0M(G);G), M0 S t < T — 1. @9

We sometimes omit the dependence of 97: ’ (G) on G when the game is clear from the context. Using
(the multi-agent extension of) the policy gradient theorem [60, [76], the gradient Vg, V”(6; G) can be
calculated as

v (0;G) 1

90i(ass) 11—
where d)(s;G) = (1 — 7)Eso, 20,20 7' Po,c(s" = slso) is the discounted state visitation dis-
tribution, and A;"“*(6; G) is the averaged advantage function. Unbiased estimators of the policy
gradient can be constructed by using the sampler from [1]]. For simplicity, we assume that the
exact policy gradients are given. It follows from the definition of the potential function (38)) that
Vo, VI (0;G) = Vg, ®(0; G), which indicates that independent policy gradient updates with indi-
vidual value functions {@4) is equivalent to running centralized gradient ascents with respect to the
potential function 2. Hence, the base algorithm for each individual game can be executed in a
decentralized way. Finally, we invoke Theorem 5 of [78] to show that under mild assumptions, our
policy gradient updates with softmax parameterization (@4)) find an approximate Nash equilibrium of
each individual game. Specifically, for any € > 0, if we run the inner stage for sufficient number of
steps T = O(1/&?), our method will find an e-approximate NE for each individual game.

,de(s? G)y, (ai|s) A (0; G), 45)

Our outer stage follows the MAML algorithm by running gradient ascent with respect to the meta-
objective Frr from (40). The gradient of F;r can be written as

t=0

T-1
VFr(0) = Egnp(g) [( [ (1 +av?2(69(©):6))) Ve (G); @)1 . (o)

where 09 (G) = 0 and 07tV (G) = ¥(0)(G); G). Accordingly, we instantiate the outer stage
update (@3) as

ot 0h - LS ( H (I+aV20(6"(G);G)) ) V(6“7 (G);G), 47)
|g‘ Geg =0

where 17 > 0 is the learning rate of the outer stage. We assume for simplicity that the exact values of
the policy gradient V& (0% 7 (G); G) and the policy Hessian V2®(0%!(G); G) are given. In practice,
one can construct unbiased estimators of the policy gradient from samples, as the policy gradient and
policy Hessian can be written explicitly in a closed form that is compatible with samplers (Lemmal[T3).
We remark that the policy Hessian depends on the cross terms of the agents’ policy parameters, which
can only be calculated in a centralized way. Our inner stage, though, can still be executed in a
decentralized manner. Our algorithm hence falls into in the regime of centralized (meta-)training
with decentralized (meta-)execution [42]], a popular strategy used for training MARL algorithms.

In order to establish the convergence of to the stationary point of the meta-objective (40), we
first show the smoothness of the meta-objective through the following sequence of lemmas.
Lemma 12. Under softmax parameterization, for any policy parameter 0 € O, any state s € S and
any joint action a € A, we have (i) | Vg log e (als)| < V2N, and (ii) |VZlogm(als)|| < 2. Fur-
thermore, for any policy parameters 0,0 € ©, we have (iii) ||V2 log g (als) — V2 log mer (als || <
1216 — ¢'|.

Lemma 13. Under softmax parameterization, for any Markov potential game G € G, any policy

parameters 0,0' € ©, any state s € S and any joint action a € A, the potential function ® satisfies
the following properties:

(i) Bounded policy gradient: |V®(0;G)|| < Bg := (@2 ;

(ii) Bounded policy Hessian: HV2<I) (0;G) H < Lg:= (16N

7

(iii) Lipschitz policy Hessian: HV2<I>(9;G) Vo0 G || <Lg|o-0|, = S6N°1

-7t
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Lemma 14. (Meta-objective smoothness). Consider running [@4) with softmax parameterization and

—_ 3 . . . .
o= % as the inner stage and running (&7)) as the outer stage. Then, the meta-objective (41)

is Lp-smooth for Ly = (a¢TBgLy + Lg)2°7.

The smoothness constant L has an exponential dependence on the number of inner stage update
steps ', which seems unavoidable even in supervised meta-learning. Based on the smoothness
property, we can show that our method finds a stationary point of the meta-objective (Theorem [4)).

D.3 Proof of Lemma[12]

Proof. For agent i € N, for any state s € S and action a; € A;, the softmax policy with parameter
0; can be written as
exp(llai 6;)

Za(b_eAi exp(lzagﬁi)’

where 0, € RISl and 1, ., is an |S||.A;|-dimensional one-hot vector that has a 1 at index (s, a;)
and Os at all the other indices. It is known that (see, e.g., [l1]])

7o, (ails) =

0 log o, (CL1|S)
90:(al]s')
where 1[-] is the indicator function. Hence, we have
||v91 log o, (a1|s)\| < \/5 (48)

Since we consider product policies, for any joint action @ = (a1, ...,ay), we have my(als) =
Hfil o, (a;|s). Therefore, it holds that

= 1[s = §'|(1[a = a'] — 7y, (d’|5)),

N
Vo log m(als)[|* < Y [[Ve, log mg, (ails)[|* < 2N.
=1

We can hence conclude that | Vg log m(a|s)|| < v2N. This completes the proof of result (i). Next,
to show result (ii), we first write the Hessian Vgi log g, (a;|s) as (see, e.g., [18] for a proof)

,
Vi, log o, (ails) = —Ea/wmy, (a1]5) [( o) = Eattma @f15) [Ls,at]) (Lo, — Eaffnre, (a/1s)[Ls,0]) } '

To find the upper bound and Lipschitz constant of V3 log 7y, (a;|s), we will rely on two technical

lemmas from [18]], reproduced as Lemmas [3| and 4]in Append1xﬂ Al Since ||V, log mg, (a;i]s)]| < 2,
from Lemma we know that Eqvwr, (a7|s »] is Lipschitz continuous with constant 2. By the

definition of 1, ,,, we have HIEQ(_INMV (a']s)[1 s,a;/] < 1. Since for any matrix A, a sub-multiplicative

matrix norm ||-|| satisfies || A2 < ||A]|, || A, we can conclude that

(L0t = Bapmame, a9 Losa]) (Lo = Bapmme, ezt [Lsa)) || < 2 49)

Further, by Lemma[3] the term in (#9) is Lipschitz continuous with constant 8. By applying Lemma 4]
one more time, we know that

V5, log mg, (ai|s)|| < 2, and Hvzi log g, (a;|s) — V2, logwe;(ai|s)H <126; = 6i]].  (50)

Since V2 log my(als) is a block diagonal matrix, we apply the result on the block diagonal matrix
norm in Lemma[3lto show that

73 tog o (als) | < ma [[V3, Lo s, (s 5) | < 2
1€ ‘
This completes the proof of result (ii). To show result (iii), we again apply Lemma [5|to conclude that
V5 log mo(als) — Vg log me (als)|| < max vai log g, (a;|s) — V?; log 7y (ai|s)H <12)6 - ¢,

where the last step is by (50). This completes the proof of the lemma. O
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D.4 Proof of Lemma 13|
In the following, since there is no possibility of ambiguity, we drop the dependence on G and simply
write V®(6; G) and V' (0; G) as V®(6) and V/(9), respectively.
To establish Lemma. we first derive an explicit formula for the policy Hessian V2® (). Notice
that V2®(6) can be written as a block matrix with N x N blocks:

Vilcb(e) e ViN(I)(G)

VAR (0) = : : 7 (51)

Via®(0) ... Vi)
where in each block V2 ®(0) € RIAIXIAL we first take the gradient of ® with respect to agent
1’s policy parameters 9 and then take the gradient with respect to agent j’s parameters 6,, i.e.,

V:®(0) = ae 89 ,Vi, j € N. The following lemma states that each V7 ;®(6) block can be written

in an explicit form. This lemma can be considered as a multi- -agent extensmn of Theorem 3 in [24].
For clarity of presentation, we defer its proof to Appendix [D.3}

Lemma 15. Each matrix block V?’ jfl)(ﬂ) in the policy Hessian matrix (31)) takes the form
Vi2(0) = Hi7(0) + 37 (0) + Hif (0) + (Hi3) T (6).

The matrices H” (6), H;’j (0), and H%J (0) can be written as

Hi(0) = sz 5,0)Q(0)Vo, log mo(als)Vy, log my(als),
seSaeA

HQ’J _ 72 Z d9 S a sa )vzﬁ] logﬂ‘g(a‘s)7
sGSaE.A

M) = 1= 3 3 dils.) Vo, log mo(al) V4, Q1 (0,
séSaEA

where we define di(s, a) := df(s) - m(als) for d(s) = (1 — 7)Egop > g V' Po(s" = s]sq).

The next lemma states that each matrix block Vi ;®(0) is Lipschitz continuous with respect to 6.
The proof is deferred to Appendix

Lemma 16. Each matrix block Vi ;®(0) in the policy Hessian matrix (31)) is Lipschitz continuous:
IV252(6) = V2,200 < Lis 10 = €'l Vi, j € N,

where the Lipschitz constant satisfies L;; < (5165

Equipped with the results from Lemma[I5]and Lemma [T6] we are now ready to prove Lemma [I3]

Proof (of Lemmal|I3).

Proof of (i): From the definition of the potential function (38)), we know that Vg, ®(6) = Vg, V" (0),
and hence V®(0) = (Vy, V(0),..., Vo,V (0)). For each agent i, the policy gradient theorem
states that )

Vo,V () = T Bonitars, (1o [ Vo, log o, (ai])Q0 " 6)]

Since @8)) from Lemma suggests that ||Vy, log 7, (a;]s)|| < /2, we obtain ||V, V(0)| <

725 Hence, [VE(0)|| < 222,

Proof of (ii): See Lemma 29 of [78]].

Proof of (iii): From the above reasoning, we know that V2®(#) can be written as a block matrix
V2e(0) = [V} ;®(0)]1<ij<n, and Lemmaimplies that each such block is Lipschitz continuous

|V3,2(0) — V7,80 < Li; 10— 0'|| Vi, j € N,

31



with L;; < (516‘/; We can then use Lemma@to conclude that V2®(6) is also Lipschitz

|V2®(9) — V(6| < T ||9 .
This completes the proof of Lemma [I3] O

D.5 Proof of Lemma/[13]

Proof. The proof follows steps similar to those used in the proof of Theorem 3 in [24]. We first

introduce a few notations. Let s%! denote the sequence of states (s°,...,s?), and let a%! :=

(a%...,a"), where a® = (al,...,aly) is the joint action at time step ¢. Further, let

t—1

pe(SO:t’aO:t | p) = Pe(SO:t7a0:t|SO ~ ,0) — p(SO) H (We(aT‘ST)P(ST+1|ST7aT)) 7T9(£Lt|3t).

=0
(52)
From the definition in (37), we have

oo
(0) =Eg | > _A'ri(s,a') [ " ~p 2227 po(s”*, a%|p)ri(st, a®).
t=0 t=0 g0:t g0:t
Using the definition of the potential function (38)), we know that
Vo, 8(0) = Vo, VL(O) =D > > v'pa(s™,a™ | p)Vo, log po(s”*,a"" | p)ri(s', '),
t=0 q0:t g0:t

where we used the fact that Vpy = pgV log pg. The second-order partial derivative can hence be
written as

= Z ZZ'Ytpﬁ(SO:t,aO:t ‘ p)Vgin logpe(SOZt, CLOZt)’I"i(St, at)

t=0 g0t g0t

®
+ Z Z Z th9<80:ta G'O:t | p)v97 10gp9 (SO:t’ aO:t | P)v;—] Ingé‘(SO:tv aO:t | p)ri (Stv at)

t=0 q0:t gO:t

®

From (32), we can see that V7 , logpg(s”*, a*" | p) = S, V3.0, logmo(a”|s™). Hence, the first
term in the above equation can be written as

0 t
D=3 2"pa(s%,a% | )3 V3.4, log mo(a”|s)ri(s", ')

t=0 q0:t s0:t 7=0

—Z’y ZZpg ,a” Vee logmg(a’|s™) Z’yt TZZPg(st,at\sT,aT)ri(st,at)
sT t=1

st at

_Z” >3l V0, oI5 0
722&9 s, a sa )V@@ logﬂ'g(a|

SGS acA

=17 (9).
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The second term can be written as

oot
@=>>"3"> 4'po(s"",a"|p) Vs, logms(a|s7) Vg, log mg(a”|s7)ri(s", @)
t=0 7=0 g0:t s0:t

7'21

+ Z Z 3757 tpe(s%, a%|p) Vo, log me(a™ s V], log me(a™|s™)r (s, a)

t= 07’2 0T1_0a0t 50t

T1—1

+ Z Z DN Ape(st, % p) Vo, log me(a™ s )V log ma(a™|s™ )ry(s", al).

t=0 71 =0 172=0 g0:t gO:t
(53)

By switching the order of summations and following a similar procedure as in the derivation of D,
we can show that the first term on the RHS of (33)) is equal to ] (6). The second and third terms on

the RHS of (53) can be shown to be H13 (0) and (H3) " (9), respectively. We skip the rest of the
proof as it follows the same procedure as in the proof of Theorem 3 in [24]. O

D.6 Proof of Lemmal[l6

Proof. Recall from Lemma T3] that
VE®(0) = M (0) + Hy(0) + M (0) + (1) T (6).
For any (s, a), we write
hy?(8) =Q; " (8)Ve, log mo(als) Vg, log mg(a ),
hy? (6) =Q;(8)V3,0, log ma(als),
hy3(0) =V, log mo(als) Vg, Q5 (0),
and hence V7 ;®(6) can be rewritten as
VE8(0) = 2= 303 db(s.a) (2(0) + 157 0) + K O) + (1) ).
SGS acA

In the following, we proceed by showing that each of the three terms h%7 (0), h%7(0), and h% (0) is
bounded and Lipschitz.

(i) Analysis of k7 (6): First, notice that |Q;*(0)] < +==. From the Bellman equation Q;**(¢) =
7i(8,a) + YEgy o p(|s,0) [V (8)], we have VQ*(0) = nys 1oP(-|s.a)[VV;® (0)]. The policy gradient
theorem states that

1 s,a.
Ve, V/(0) = EESng,aiweius) [V, log o, (a;]5)Q;" (9)] .

Since @8) from Lemmasuggests Vo, log 7, (a;]s)|| < v/2, we obtain |V, V(0)]| < (1\C)2

Hence, |[VQ;*(0) < (1\[77)2 ,and Q7" (6) is Lipschitz continuous with constant (1\[7)2 In addition,
the proof of Lemma mphes that Vg, log 79 (a|s) is bounded by v/2 and is 2-Lipschitz continuous.
&

Further using Lemma 3] we can conclude that

- 2v2(2 - )

[ @) < 7= ana [1i70) - w @) < ST e -l (54)
(ii) Analysis of hy’(#): From step (i) of the proof, we know that Q*(f) is bounded by
1 V2

fp— and is (= -Lipschitz continuous. Since mp is a product policy, for i # j, we sim-
ply have V§ 0, logmg(als) = 0. Fori = j, we know from (50) that ||V3,39,- log mg(als)|| <

2, and ||V3, 0, logﬂg(a| ) — Vgiej log e (als)|| < 12]|6; — 0%||. Therefore, we obtain from
LemmaIZIthat

hi7(0) =0, if i # j; and ’

2 —
52— 1o gy i =

) hzzj(e) - hg’j(gl) 1—~)2
(55)

h’ (0)]| <

1—x
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(iii) Analysis of h%J(6): In the following, we first establish the Lipschitz continuity of Vo, Q7(0),
which can be shown in a similar manner as in Lemma A.2 of [74] and is reproduced below for
completeness. Let

pe(SO:t’ao:t | s,a) — ]Pya(sO:t Ot|s =s, a _ a Hﬂ_o T—H‘S‘H_l) ( T+1|ST’aT).

By the definition of the Q-function (37),
9) _ ZZ Z,Ytpg(SO:t,aO:t | s,a)ri(st,at)
t=0 g0:t g0:t
The gradient of Q);"“(#) can hence be written as

VG Qg “ Z Z ZV pa :t7a0:t ‘ S7a’)v9j Inge(SO:t7aO:t ‘ S,CL)’I“,L'(St7 a't)

t=0 qO0:t gO:t
[eS) t

= Z Z Z vpe(s%t, a’t | s,a) Z Vo, logmo(a”|sT)ri(s',a’).
t=0 g0t gO:t p—

To show the Lipschitz continuity of Q;“(6), we first write

Ve, Q7% (0) — Vo, Q7 (6"))|

o] t t
< Z Z Z 7| po (s, a"|s, a) Z Vo, logmg(a”|s™) — por (s”*,a%"|s, a) Z Vo, log g/ (a™|s7)|

t=0 q0:t g0:t =1 =1

o] t
SZZZ’yt Ipo(s”*,a%|s, a) — por (s”,a|s, )] Zng log mp(a™|s7) (56)
t=0 g0:t g0:t =1
00 t
+ Z Z thpgf (5% a%|s, a) Z Vo, logmg(a™|s™) — Vo, log mg: (aT|sT)) H ) (57)
t=0 q0:t g0:t =1

In the following, we upper bound each of the two terms above separately. To analyze (56)), we first
apply the mean-value theorem to the function []%_, 74(a|s™) of # and obtain

t

H (a”|s™) Hﬂ'gr a’|sT)

T=1

t

= ZV# a™|s™) H m5(a”|s")

T#m,7=1

<o -0 - ZHVlogﬂe a™s™)|| Hﬂ'g a’|sT)

m=1

¢
<V2Nt|o -0 - H m5(a’|sT)
T=1

where § = A0 + (1 — )¢’ for some X € [0, 1], the first inequality uses the fact that Vrz(a™]s™) =
75(a™|s™)V 1og mz(a™[s™), and the second inequality is due to Lemma. 12| (). Using the above
property, we obtain

|p€.(so:t7 aO:t‘S7 a) — por (SO:t7a0:t|S7a)|

_ H 7r9(a7+1|37+1)P(37+1|sT7aT) _ H 7T0/<aT+1|ST+1>P(ST+1|ST’aT)
t—1 t

< Pm11s7.a)- VARt [0 - 0] - [ mgla”ls")
7=0 T=1

=p;(s"t,a%|s,a) - V2Nt |6 — '] .
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Substituting the above equation back into (56) yields

68 <33 3 VANt py(s" a0

t=0 g0:t gO:t

3090, g mo(als)| - 1o -]

T=1

< Z Z Z 2V Nty py (5%, a%|s,a) |0 — 0],

t=0 q0:t g0:t

where the second step uses (@8] from Lemma [T2]and the fact that 7y is a product policy.
To upper bound (37), we apply Lemma [I2](ii) and obtain

[e%e] t
G < Z Z Z’ytpgf(so:t, ao:t\s, a) Z HV@J. logmg(a”|s™) — Vy, log 7r91(aT|ST)H

t=0 g0:t gO:t —
0

< Z Z Z 2t’7tp9’(50:t7 a():t|57 CL) He - 0/” :
t=0 g0:t gO:t

Substituting the above upper bounds back into (36) and (37), we have
|V, Q7(0) = Vo, Q7 (0")]
< Z Z Z ’}/t (2\/ﬁt2pé(30:t’ aO:t|S, a) + Qtpgf(so:t, aO:t|S, a)) ||9 . H/H

t=0 q0:t g0:t

:Z'yt (zx/NtQ + 2t> 16— 6|
4\F’y(1 +1)

(1-7?

where the second step holds because Y 0.0 2 0.t Dy (S
that 2t < 2v/Nt2, and that

16— &Il

Ot q%t|s, a) = 1. The last step uses the facts

= R 1 1 (1+7)
2= —— N (1=t 2= —— E[T? = ——

where T is a random variable following a geometric distribution. We have hence derived that
4V Ny(1+7)

Vo,Q;(0) is Lipschitz continuous with constant ==

Following the same reasoning as in step (i), we obtain that Vg, log 7 (a|s) is bounded by /2 and
is 2-Lipschitz continuous. Similar to step (i), we can also use the Bellman equation and the policy

gradient theorem to show that ||V(;rj Q0] < (1_ . Again, by applying Lemma (3| we can
conclude that

‘h j < 6V2N~y(1+7)
- (1=

(iv) Putting everything together: Let h(0) := k7 (0) + hi? (6) 4+ h%J(0) + (k)T (6). Using the
simple observation that the sum of two Lipschitz continuous functions is also Lipschitz continuous,

we obtain from (54), (53), and (38) that
1h(8)]] <

Recall from Lemmal[I3] that

130) —hii(9) (58)

2y
0 H < and
) (1-79)?

50V N

and [|h(0) — h(¢")|| < ﬁH@ o'l (59)

4
(1=7)*

V2 :722(198@

.sES acA

35



By adding and subtracting the same value,
IVE,20) = V20|

gﬁ SN ||, wno) - @ (s, apne)

s€eSacA
sﬁ S5 ([dits @) = df (s, 0)| 116 + i (,0) [10(68) — H(@)]))
seSacA
L Gsa_(f/sa M oy G’Sa
AP L 2 [~ |+ T I =01 Y )
56V N )
SW lo—o.

The third step uses the upper bounds from (9). The fourth step can be derived by using the following
result from Equation (A.67) of [74]:

Z Z ’di(s,a) — dzl(s,a) < 2N 16— .

g

sES a€A 1=y
This completes the proof of the Lipschitz continuity that |[V7,®(6) — Vi, ®(¢")|| <
Lij |6 = 0'|] Vi, j € N for Ly = ZE45%. 0

D.7 Proof of Lemma (14|

Proof. Recall from that the gradient of the meta-objective can be written as
T-1

VFT(Q) = EGNUnif(g) [( H (I + an(I)(Q(t)(G)’ G)))V@(@(T) (G), G)

where 0(°)(G) = 6 and **+D(G) = ¥(0®)(G);G). It suffices to show that for each individual
game G € G, the term
T-1
( [ (7 +av2ee?(G); G)))V@(9<T> (G);G) (60)
t=0
is Lipschitz continuous. In the following, we drop the dependence on G and simply write 6(*) (G)
and V®(0)(G); G) as ) and VO (H™), respectively.

We proceed by finding the upper bound and Lipschitz constant of each individual term in (60). First,
from Lemmaii), we know that HI + aV2<I>(9(t))|| <1+ aLg,V0 <t <T —1. By using the
chain rule, we also know that

t—1

Vot = [ (I + aV2e(0™)).

/=0
Hence, since HI+ aV2<I>(9(t))H <14 aLg, V0 <t < T — 1, we know that /) is Lipschitz
continuous with constant (1 + aLg)?. Further, combining Lemma (iii) with the fact that the
Lipschitz constant of a composite function is equal to the product of the Lipschitz constants of the
base functions, we conclude that I + aVQQD(H(t) is Lipschitz (with respect to #) with constant
aLy(1+ aLg)!. For the case of T' > 2, Lemmathus implies that the tT:Bl(I +aV2e(eM))
factor from is Lipschitz with constant o7 L (1 4+ aL¢)?7 !, while for T = 1, the Lipschitz
constant is simply aLyy.

For the V®(0(™)) factor in (60), we know from Lemma i) that it is bounded by B¢. Using
Lemma iii) and the Lipschitzness of a composite function, we also know that V®(8(7)) is L (1 +
aLg)"-Lipschitz continuous. Finally, along with the results that the [ ;' (I +aV2®("))) factor is
bounded by (1+aLg)T and Lipschitz with constant T L g7 (1+aLg)*T —1, we again apply Lemma
to obtain that (60) is Lipschitz continuous with constant T Bg L (1+aLg)*T ~'+ Lg(1+aLg)?T.
Using the fact that @ € (0,1/L¢], we can conclude that the meta-objective Frr(6) is Lp-smooth
with Ly = (aTBgLy + Lg)2?7.
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D.8 Proof of Theoremd

Proof. Based on the aforementioned series of lemmas, we are now ready to establish Theorem@ The
proof follows from standard analysis in non-convex optimization. Since the meta-objective function
is L p-smooth (Lemma|[I4)), the smoothness property implies that

L X
FT(ek—H) > FT(Hk) + VFT(ek)T(9k+l _ ek) _ 7F H9k+1 _ 9"“2.
Using the outer stage update rule that
0"+t = 0 + VP (6%),

we obtain

2 1 2
[VFp(6%)]]” > FT(Q’“)—&-E |VPr(6")|”,

Lpn?
2

Fr(6") > Pr(6%) +n |V Fr(6%)||”

where the last step uses 7 = 1/L . Summing the above inequality over k and rearranging the terms
lead to
K—1

K-—1
S [VER@* <2Le 3 (Fr0"+) ~ Fr(04) = 2L (Fr(o%) - Fr(0%) < 20T
k=0 k=0

)

where the last step holds because |®(0;G) — ®(0";G)| < Ppax < %,VG,G’ € 6,G € G.
Therefore, for K > ANLE_ we have

(1—7)e>>
K—1
< — < ——— <¢”.
o<l PO < e X IVEr ) < g <
This completes the proof of the theorem. O

E Supplementary Material for Section [5|

E.1 Base Algorithm

In this appendix, we first describe our base algorithm for learning CCE in a general-sum Markov game,
which was omitted in the main text due to space limitations. The optimistic online mirror descent
algorithm for learning CCE in a general-sum Markov game is presented in Algorithm[2] Similar to
Algorithm [T] for zero-sum Markov games, Algorithm [2] performs optimistic online mirror descent
(551 162]] for policy updates in order to establish initialization-dependent convergence. Algorithm 2]
also utilizes stage-based value updates to avoid the need for a complicated no-weighted-regret analysis.
Different from Algorithm [I] the output policy 7 of Algorithm [2]is no longer a state-wise average
policy but rather a correlated policy. The construction of 7, similar to the construction of the “certified
policies” in the literature, is described in Algorithm 3]

We further introduce a few notations similar to the zero-sum game setting. For any (7, h, s), we
define the per-state regret for player i € N as

1 & )
regy ;(s) == max L— Z <7r}TL;r fwfbi,Q;,ﬂrfb,_J(s). (61)
Trh’j(lg)EA(AJ T g=tsart

We define the maximal regret (over the states and all the players) as
T T
regy, := max max{reg}, ;(s)}.
Lemma [I7] provides an upper bound of the per-state regret (6I), which further leads us to the

following initialization-dependent convergence guarantee of Algorithm We finally define 527 ;=

th, i Th t ¢
maxses(V, 'y — V), 1)(s), and let 6, := max;en 6y, ;-
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Algorithm 2: Optimistic Online Mirror Descent for CCE in General-Sum Markov Game

1 Input: Initial policies 7 : [7] X [H] x S — A(Aan);

2 Set stage index 7+ 1, " < 1,and L, + H;

3 Initialize: 7) = 79 « 7}, and Q] + 0,Vh € [H];

4 for iterationt < 1to T do

5 Auxiliary policy update: for each player i € A/, step h € [H| and state s € S:

#1.4(1s) <« argmaxn (1, [QF i1 ](57) ) = Dl 7h! (1)
HEA(A;)

6 Policy update: for each player i € A/, step h € [H] and state s € S:

wh4(1s) = avgmax (. [QF w1 ](5.2)) = Drlps 7, 1(1s):
HEA(A;)

7 ift — "+ 1> L, then
8 e et 8 b+ 1, Ly < (14 1/H)L, 3

T

9 Value update: foreach h € [H],s € S,a € Aa,i € N:
tend
T 1 - T !
htl(&a) — - Z (Th,i + Ph[Qh+1,i7rltz+1]) (s,a);
T t/:t.;larl
10 T T+ Lynf =@l « 77, Vh € [H];
11 Output policy: Sample ¢ ~ Unif([7]). Output 7 := 7! as defined in Algorithm

Algorithm 3: Construction of 7},

1 Input: Policy trajectory {7}, } ne|r],cci] Of Algorithm
for step h' <+ hto H do

3 Uniformly sampléj from {ti“(l;‘)il, tST“(l?)fl +1,... ’tin((i)q};

[ 5]

£

Execute policy 7, for step h;
Sett + j;

wn

E.2 Proof of Theorem 3

Proof. From the construction of 7 (Algorithm [3)) and the definition of CCE-gap, we have

CCE—gap(fr) = n’é?/’\)[{ Vlt;:ﬁ'fi (S]_) _ Vrlﬁl(sl)
1« - ,
<g 2 mpna (V0 -

1 T
<=M 4t
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Using Lemma([I9)] the above term can be further bounded by

CCE-gap(7) < — Z ot

T

ZnTL o Z{%@gg% n AT Cls)) + 36(N — 1)y H

—h,t ~ 4
**ZZ%%I;??DR mra AL C) + 36N — VP H

3 T
‘f§:§:£%ﬁ Dy} 77 4(ls)) + 36(N — 1)°n*H*,

where the last step is simply by changing the counting method. This completes the proof for the first
claim in the Theorem.

We now proceed to establish the second statement, which follows a similar argument as in the proof
of Theorem [I|for the two-player zero-sum game setting. We repeat the proof below for completeness.
Recall that we chose the negative entropy as the regularizer R. The Bregman divergence Dg(-, -)

reduces to the Kullback—Leibler divergence. Since WZI lies in the simplex, when we initialize
7h ;(-|s) = 1/A; to be a uniform distribution, we naturally have Dg (7, I, 7 i(+[s)) <log A;, Vi €
N,seS8,and h € [H].

It remains to upper bound the total number of stages 7. Recall that we have defined the lengths of
the stages to increase exponentially with L1 = [ (1 + 1/H)L;|. Since the 7 stages sum up to T’
iterations in total, by taking the sum of a geometric series, it suffices to find a value of 7 such that
(1+1/H)™ > T/H. Using the Taylor series expansion, one can show that 1+ 57 >e— %
Hence, it reduces to finding a minimum 7 such that

)"k

One can easily see that any 7 > ; ( / ) satisfies the condition. Summarizing the above results, we
can conclude that

12H?log T
CCE-gap(7) < T"g 10g Amax + 36(N — 1)22H*.
Choosing n = H~2/3T~1/3(N — 1)~2/3 yields the second claim in the Theorem. O

E.3 Supporting Lemmas for Section 3]

Lemma 17. For every stage 7 € N, every step h € [H] and every state s € S, the per-state average
regret of player i € N is bounded by:

1 T, =T
vego(s) < —r—Dr(ny] 7 (s)) + 36(N = 1)n*H'. (63)

Proof. Notice that the policy update steps in Algorithm [2]are exactly the same as the optimistic online
mirror descent algorithm [55162], with the loss vector g* = [Q] ;7 _;|(s,-) and the recency bias

= [Q;”ﬂ'z_jl] (s,-). Since our stage-based value updates assign equal weights to each iteration,
we end up with a classic no-(average-)regret learning problem instead of a no-(weighed-)regret
learning problem as in [72,[77]. This allows us to directly apply the standard optimistic OMD results
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(e.g., Lemma 1 in [55]] and Proposition 5 in [62]) to obtain

end
tr

regy, ;(s) = L fnax . Z <7TZI - Wi,i»Q;,ﬂri,—» (s)
) EA(A) HT

j::tﬂ“"
tend
1~ N j j—1 2
<——Dr(ril, 7 Cls) + 1= D ||[@hird i — Qhamh (s, )|
nitr T j=gstart o
1 il j j—1 2
- |- S) — . . S
T EXAREE AR
tend
4 s N N ; - 2
<——Dr(r 7 Cls) + 7= D 2B [m (1) =m0 19| 64
ntir Tj:tslan 1

where in the last step we used the Holder’s inequality and the fact that ||Q7, (s, -)|| ., < H. To further
upper bound (64)), we apply Lemmato obtain that for any ¢ € [, ¢nd],

2

[mh i 1) = w2y 9)|| < 18(N — 1) (65)

We remark that the policy stability condition above has a slightly worse dependence on 7

than those of the optimistic FTRL algorithms. In particular, Lemma G.4 of [77] has shown a
2

‘ G s) =T (| S)H < 16(N — 1)?»2H? condition for optimistic FTRL. This is because
. : 1

unlike optimistic FTRL, optimistic OMD lacks a smoothness condition that directly connects the
stability of policies to the stability of utility functions (e.g., Lemma A.5 of [[77])). Plugging (63) back
into (64) leads to the desired result. O

Lemma 18. For a fixed T and any t € [t ) i € N,h € [H],s € S, the optimistic online
mirror descent policy updates in Algorithm 2| satisfy:

2
mh (] 8) = w (| s)H1 < 18(N — 1)*pH.

2
< 18nH.
1

Thi(- | 8) = (¢ 19)

Consequently,

Proof. In this proof, since we focus on a fixed (s, h) — S x [H], we will drop the dependence on
(s, h) for notational convenience. To prove the first claim in the lemma, we first use the triangle
inequality to obtain that

t t—1 t_ At At at—1
[k P (k] MRl (o Ak P

AR A (66)

In the following, we derive an upper bound for the first term on the RHS of the above inequality. The
other two terms on the RHS can be bounded in a similar way.

|, < \/2KL (x}[|7]). 67)

In the following, it suffices to find an upper bound of KL (#?|7!). Recall that Algorithm [2Jupdates
the policies as

We know from the Pinsker’s inequality that

t ~
7 =77

i = argmaxn (1, [Q77'5']) — Dr(p, 7).
HEA(A;)
Since we chose the negative entropy as the regularizer R, the policy update rule above is known (see
Section 5.4.2 of [28]]) to be equivalent to the following multiplicative weights update:

rt(a) = 7ATZ-A(ta) exp(n[@7 7=, ](a))

= @) esplrl@r @)
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Hence, we have that

SN ) PRI (@)
= 2 O @ @)

where the inequality uses the facts that Q7 > 0 and ||Q7 ||, < H. Substituting the above result back
to leads to

| — #t]], < /2KL (f]|7}) <
Similar results also hold for the other two terms on the RHS of (66). Therefore, we can conclude that
|t — 7!~ 1|, < 3v2nH and

Hﬁf — 7r;-571|ﬁ < 18nH.

This proves the first claim in the lemma. To establish the second claim, we use the following simple
fact for product distributions:

It = < D Ml =l
J#i
Applying Jensen’s inequality yields
2
It =t < (Sl —mi ), | < =) Y g - < 1808 - 1P,
J#i J#i

This proves the second claim in the lemma. O
Lemma 19. For any iteration t € [T| and any step h € [H|, we have that

H

3 7(t)—h'+h— ~7(t)—h'+h—
5 < maxmaxDR(wh,(ti) ok 1’T77rh/(ti) WAL 9)) 4 36(N — 1)22H.
ULT(t) o iEN seS ’ ’

Proof. In the following, when we consider a fixed iteration ¢ € [T'], we drop the notational dependence
on ¢ and simply use 7 (instead of 7(t)) to denote the stage that iteration ¢ belongs to. For any
h € [H — 1], using a similar argument as in Lemma for the zero-sum game setting, one can
establish the following recursion for the value estimation error:

£,
1 i —
<7 , > 6, regr (68)
i

where we recall that reg], := max,cs max;ec N{regz7i(s)}. Using Lemma we can upper bound
the regret by

1
regj, < max Max Dr(mpl, 7% ,(]5)) + 36(N — 1)*n*H>.

We substitute the regret bound above back into the recursion[68]to get that

ey
1 .
T—1,f ~7—1 2. 27173
5, < maxmax —=—Dr(m, ", 773" (1s)) + 36(N — 1)*n*H® + 7— Z 01 (69)
J= T—1

Notice that according to the definition in Algorithm the behavior of the policy 7}, does not change
with ¢ within the same stage 7 as it always uniformly sample a time index from the previous stage
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and execute the corresponding history policy. Consequently, the 6{; 1 term is also unchanged within
a stage. Hence, we have

R

SR

L h+1 = Yh+1"
T—1 j=gtart
T—1

The recursion in can hence be rewritten more succinctly as

¢ < maxmax Dg(my M1 707 Cls)) + 36(N — 1)°n2H® + 67 1.

ieN s€S nL._q
Applying the above inequality recursively over h leads to
H

1 / ’ B
52 < max max 7DR(7T}:/_h +h_1’T77~r;,_.h +h_1('|5))+36(N* 1)27]2H‘3(H7h+1)
h/:h ZEN SGS ,rILT*h,+h71 o o

H 1 1 h'—h+1 , ,
< max max (1 + ) DR(W;fih +h717f77~T;:¢h L s)) + 36(N — 1)°n°H*

oo, iEN ses nL;, H
H
3 —W 4h—1,f ~r—h +h—1 2, 2774
<oy o s Dl LA ) + 36V 1P 10)

where the second step uses our choice of the stage lengths that L.y, = [(1+ 1/H)L. |, which

further implies that
1 1 1 h'—h+1
BT TATI LS
LT—h’+h—1 L, H
The last step in is due to the fact that (1 + 1/H) < e ~ 2.71828. O

E.4 Proof of Theorem [6]

Proof. First, recall the definitions of 7%, 7% and wf T Since we use a negative entropy regularizer R,
the Bregman divergence Dg(-, -) reduces to the Kullback-Leibler divergence. Using these notations,
our convergence results of learning CCE in an individual game G* (Theorem |5)) can be written more
succinctly as

3
CCE-gap(7*) < — KL (7% T)|7%) + 36 N2> H*.
U

where for ease of notations, we write

H T N

KL (751 7%) i= 307> maxKL (w7 ([s) 75 (1)

h=171=11i=1

Here, WZ’Z’T (+|s) represents the value of WZI (-|s) in game G*. By running Algorithmon a sequence
of K games, we have that

K K
1 3
— ) CCE-gap(*) < —— > KL («"1[|7*) + 36 N*n>H*. (71)

Recall the notation that [x], = (1 — a)x + $1 for x € R%. By applying this notation entry-wise to
each probability distribution in 7% and invoking Lemma[l} we obtain that

1 & 1 & A
% S KL (7M1)|7k) < % > KL ([7*1].]|7%) + 4H7aln % (72)
k=1 k=1

Notice that the conditions of Lemma [I] are satisfied here because we select our initial policies to

1 k—1 [ K

be 7k = 1 o= e Vi € N, which assigns a probability of at least a1/A; to each action.
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Adding and subtracting the same term leads to

ZKL Joll7%) mmZKL ™1 |Im) —|—m1nz (KL ([7*1]a]|7*) — KL ([7*]a]|7))
. 8Amax(l +1In K)
< k.t max
_mT}nZKL ([*Tallr) + o ) (73)
k=1
where the minimum 7 is taken over all policies of the form of 7 = (7y,...,7y) such that 7; :

[7] x [H] xS = A(A;). We now turn to establish the second step in (73], which reduces to bounding
the following regret where the loss functions are given by the Bregman divergences:

reg = mﬂinz (KL ([7*1]]|7%) — KL ([7*1]a||7)) .

k=1
It is known that the unique minimum of Y_},_, KL([7*"1],||) is attained at 1 S, _, [7*"1],, (see
Proposition 1 of [3] for a proof of this claim). Therefore, by letting 7% = kl 1 Z/ 11[ ¥ T}a, we

are essentially running the follow the leader (FTL) algorithm (separately for each entry (7' h,s) €

[7] x [H] x S) on the sequence of losses defined by "1 KL([7*1],]|-). We can then invoke the
logarithmic regret guarantee of FTL with respect to Bregman divergences, which was established in
[35] and is reproduced as Lemma 2] in Appendix [A]for completeness.

To show that Lemma [2)is applicable, we remark that the Kullback-Leibler divergence is not Lipschitz
continuous near the boundary of the probability simplex, which breaks condition required by Lemma@
However, by restricting to policies of the form [m;]o = (1 — a)m; + -1, which is at least -
distance away from the simplex boundary, the Kullback-Leibler divergence is indeed L1psch1tz
continuous within this A—i-restncted domain. One can show that the Lipschitz constant of each entry

of KL([xF 1], ) is 24max within the - -restricted domain. This allows us to apply Lemmato
obtain the result in (73).

Moving forward from (73), we again apply the property that the unique minimum of
Sk KL([7¥"1]4]]-) is attained at £ 77, _, [7*"1],,, which leads to

Amax(1 +1In K
ZKL T o | 75) <m1nZKL ]QHW)+8 (14+InK)
o
k=1
K 8Amax(1 + In K)
:ZKL ([ﬂ_va]aH[ﬂ_*]Q) + max -
k=1
K 8Amax(1 + In K)
< N k,t * max
<(1—a)) KL (x"f||r*) + " , (74)
k=1
where the second step uses the definition that 7} = & Z b1 T T and the last step is by the (joint)

convexity of the Kullback—Leibler divergence. Substltutlng - to (72) yields

1 o 1 7
?’;KL(W )gggKL(w

Further substituting the above result back into (71 and using the definition

K N
=3 > KL ()

k=11i=1

) 4 8Amax(l +1In K)
Ka

+4H7aln Amax
o

we obtain that

3 8 Amax(1 + In K
—ZCCE gap(7¥) < KT(AH (a )

Amax
+4KH7aln ) + 36N> H*.
(0%
k=1
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Finally, using the conditions that o = 1/vK,n = K~ YSH=2/37-1/3N=2/3 and 7 < 4H log T
(see (62) for a proof) yields

K 2
1 _k HN\3 [ A, 10Anax In K 52H? In T log(Amax K)
= kz_l CCE-gap(7") < < T > (K5/6 KT IRIE .

This completes the proof of the theorem. O

F Simulations

In this appendix, we provide detailed discussions of our simulation results. We first evaluate our
algorithms on a sequence of handcrafted two-player zero-sum Markov games (Appendix [FI)) and
Markov potential games (Appendix[F-2). Then, in Appendix[F.3] we further demonstrate the scalability
of our methods by considering larger-scale tasks, including a simplified version of the Poker endgame
considered in [27]] and a 1D linear-quadratic tracking task [37].

F.1 Zero-Sum Markov Games

We first evaluate our meta-learning procedure presented in Section [3| on a sequence of K = 10
two-player zero-sum Markov games. We generate a sequence of K similar games by first specifying
a “base game” and then adding random perturbations to its reward function to get K slightly different
games. For our base game, we consider a simple zero-sum game with two states S = {so, s1 }, where
each player has two candidate actions A = {ag, a1} and B = {by, b1 }, respectively. The reward
matrices for the max-player at the two states are given in Table [I] We add independent A(0,0.1)
Gaussian perturbation to each entry of the reward matrix to generate K = 10 slightly different games.

S0 ‘ bo by S1 ‘ bo by
ap | 05 O ap | 05 O
aq -1 0.5 aq 0.2 1

Table 1: Reward matrices for the max-player in the base game.

To better visualize the similarity level of these games, we plot the NE policies of the two perturbed
matrix games in each of the K = 10 games. In particular, let u* = (ug,pf) € [0,1]% and
v* = (§,v5) € [0,1]? denote the NE policies of the two players in a certain game. Since
uh + py = 1and v§ + v§ = 1, it suffices to simply use the two values 5 € [0, 1] and v§ € [0,1] to
characterize the NE policies. Figure(c) plots the relative position of the (1§, v§) pairs of the K x 2
games in the space of [0, 1] x [0, 1] to illustrate their closeness, where the [0, 1] x [0, 1] space is large
enough to cover all possible zero-sum games of the same form. We note that Figure 2] (c) only plots
the NE pairs with respect to the perturbed matrix games as defined in Table[I] Due to the existence of
the state transitions, the NE policies with respect to the stage Q-functions can be more diversified. In
this sense, we can see that our similarity assumption of the games is not too stringent as it allows the
games to have relatively diverse NE policies.

> — 2 1.00
%, ----Individual NE-gap — oo o
o 4 \ —— Meta-learning NE-gap /;l_ﬁ__ﬁ 0.751 “:O' .
\ $1 & e
o \ ;f, % ©0.50 1
z2 f ----Individual value 0.251 e  State sg
04 - —— Meta-learning value - State s;
0 0.00 T T T T
0 250 500 750 1000 0 250 500 750 1000 0.0 0.2 0.4 0.6 0.8 1.0
Iterations Iterations 1
(a) Zero-sum game NE-gap (b) Zero-sum game value (¢) NE visualization

Figure 2: Average (a) NE-gaps and (b) values of the policies output by individual learning and
meta-learning in zero-sum Markov games. Shaded areas denote the standard deviations. (c) visualizes
the NE policies of the K games in the normalized space [0, 1] x [0, 1] to illustrate their closeness.
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The state transition function is defined as follows: In both states sy and sy, if the two players take
matching actions (namely (ag, bg) or (a1, b)), the system stays at the current state with probability
0.9, and transitions to the other state with probability 0.1. On the other hand, if the two players take
opposite actions (namely (ag, b1) or (a1, bg)), the environment will stay at the current state with
probability 0.1, and will transition to the other state with probability 0.9.

Each of the K games lasts for H = 10 steps, and we run our algorithm for 7" = 1000 iterations on
each game. We use a learning rate of 77 = 0.02 for Algorithm[I] We evaluate the convergences of the

algorithms in terms of NE-gap(u, v) := V;"""(s1) — V"1 (s1), which measures the distances from
the output policies to each agent’s best response policy. Figure [2](a) compares the average NE-gap
over the K games between individual learning and meta-learning. Figure 2| (b) further compares the
average values achieved by the two methods. All results are obtained on a laptop with an Intel Core
15-1240P CPU. We see that compared to learning each task individually, meta-learning can utilize
knowledge from previous tasks to attain better policy initialization in a new task and converges to an
approximate NE policy (and value) using much fewer iterations.

F.2 Markov Potential Games

We now evaluate our meta-learning algorithm from Section [4|on a sequence of Markov potential
games. We illustrate our algorithm in cooperative games, an important class of MPGs where the
agents share the same rewards. We again generate a sequence of K similar games by first specifying
a base game and then adding random perturbations to its reward function to get K slightly different
games. Our base game has two states S = {sg, s1} and each player has two candidate actions
A ={ag,a1} and B = {by, b1 }. The shared reward matrices for both players at the two states are
given in Table We add independent NV (0, 0.1) Gaussian perturbation to each entry of the reward
matrix to generate K = 10 slightly different games.

S0 ‘ bo by S1 ‘ bO by
ap | 0.1 0.5 ap | 0.8 0.2
ap | 0.5 1 a; | 0.2 0.8

Table 2: Reward matrices for both players in the base game.

The state transition function is defined in the same way as in Appendix [F.1} In both states s¢ and s,
if the two players take matching actions (namely (aq, by) or (a1, b1)), the system stays at the current
state with probability 0.9, and transitions to the other state with probability 0.1. On the other hand, if
the two players take opposite actions (namely (ag, b1) or (a1, bg)), the environment will stay at the
current state with probability 0.1, and will transition to the other state with probability 0.9.

1.5
\ ---- Individual NE-gap 0y ——
al04 —— Meta-learning NE-gap s —
g 38 7
& &
5 > /
=05 61 -=== Individual value
/I —— Meta-learning value
0.0
0 250 500 750 1000 0 250 500 750 1000
Iterations Iterations
(a) Potential game NE-gap (b) Potential game value

Figure 3: Average (a) NE-gaps and (b) values of the policies output by individual learning and
meta-learning in Markov potential games. Shaded areas denote the standard deviations.

Each of the K games lasts for H = 10 steps, and we run our algorithm for 7' = 1000 iterations
on each game. We use a learning rate of & = 0.05 for the independent projected Q-descent
algorithm (7). We evaluate the convergences of the algorithms in terms of NE-gap(u,v) :=
%(Vf’”(sl) + V{""(s1)) — V}*¥(s1), which measures the distances from the algorithm’s output
policies to each agent’s best response policy. Figure[3](a) compares the average NE-gap over the
K games between individual learning and meta-learning. Figure [3|(b) further compares the average
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values achieved by the two methods. Again, we see that meta-learning finds better policy initialization
in a new task and converges to an approximate NE policy (and value) using much fewer iterations.

F.3 Scalability

To demonstrate the scalability of our algorithms, we further provide simulation results on some
larger-scale tasks including a Poker endgame and a 1D linear-quadratic tracking task.

The Poker endgame that we consider here is a simplified version of the one used in [27]. We use a
public River endgame (“Endgame A” of [27]) that was released in the Brains vs Al competition [6].
This task is a zero-sum game with 2 players and roughly 1.7 million states. We simplify the game
setup by restricting to 2 actions (namely calling and folding) for each player. Poker is a partially
observable game, but we found that our algorithm still performs well if each agent simply uses its
local observation as the state. We generate a sequence of K = 10 similar games by adding N (0, 0.5)
perturbations to the normalized stack amounts of the players, which essentially perturbs the reward
functions. The convergence of the average NE-gap over the K games in Figure [4(a)] shows that
our method can handle such a large state space, and our meta-learning method can converge to an
approximate NE policy faster than individual learning.

067 — 15 )
s, "7 Individual NE-gap ~~~.__ === Individual NE-gap /
. N— j\fleta—learning NE-gap 210 ——  Meta-learning NE-gap o 4 2
Q0 S=o -s% S g
& 0.44 = a0 _ s ==
= ey = - s v
M Z05 \ —6 ~ ==== Individual value
_-=="7 —— Meta-learning value
0.2
0 25000 50000 75000 100000 0 2000 4000 0 2000 4000
Iterations Iterations Iterations
(a) Poker endgame NE-gap (b) LQ tracking NE-gap (c) LQ tracking value

Figure 4: Average NE-gaps and values of the policies output by individual learning and meta-learning
in the Poker endgame and linear-quadratic tracking task. Shaded areas denote the standard deviations.

In the 1D linear-quadratic tracking problem, each agent tries to track the positions of the other agents
and stay close to them. We adopt the discrete setting as has been utilized in a few recent works
[52,137,146]), which is an approximation of the classic continuous linear-quadratic formulations. This
task has primarily been formulated as a mean-field game, but we consider a finite-agent variant of it
in our simulations. Specifically, the task we consider can be modeled as a Markov potential game
with 4 players, 625 states, and a joint action space of size 81. For each agent i, let s, ; € S; and
a:,; € A;, respectively, denote its local state (i.e., position) and local action at time step ¢, and we write
st = (s¢,1,...,8¢4) and ay = (ag1, . .., ar4). Each agent has 3 candidate actions A; = {—1,0,1}
and can stay at 5 different positions S = {—2, —1,0, 1, 2}. The state transition of agent  is given
by St11,; = St.i + ariD¢ + o4/ Ay, where A, is the time duration, and &; is the i.i.d. noise taking
values from {—2, —1,0, 1, 2} following a normal distribution. Let ; denote the empirical mean of

all the agents’ positions at time ¢, i.e., i = % Z?Zl s¢ ;. The reward function for agent ¢ is specified
as ri(s,a) = (—5a7; — % (ue — 51,4)>)A. Intuitively, this reward function incentivizes agents to
track and stay close to the population (despite the random drift ;), but discourages agents from taking
large-magnitude actions. We do not consider terminal costs in our simulations. The parameters are
setas Ay = 1,0 = 1, and k = 0.5. We generate a sequence of similar games by adding N (0, 0.5)
perturbations to the local state transition drift magnitudes. Figures f(b)| and demonstrate that our
meta-learning method achieves faster NE-gap and value convergences than individual learning in the

linear-quadratic tracking task.
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